Example #1
0
 def mpi_sampler(self, walker_ratio, burnin, samples, num, threads=-1):
     """
     :param walker_ratio:  the ratio of walkers and the count of sampled parameters
     :param burnin: burin iterations
     :param samples: no. of sample iterations
     :param num: number to put in output files e.g: string(name+num)=Pk_1,Bk_1
     :param threads: no. of cpu threads
     """
     #   self.chain.setup()
     #   print("find best fit point")
     #   pso = MpiParticleSwarmOptimizer(self.chain, params[:, 1], params[:, 2])
     #   psoTrace = np.array([pso.gbest.position.copy() for _ in pso.sample()])
     #   params[:, 0] = pso.gbest.position
     mpi_sampler = MpiCosmoHammerSampler(
         params=params,
         likelihoodComputationChain=self.chain,
         filePrefix='%s' % self.name + '%d' % num,
         walkersRatio=walker_ratio,
         burninIterations=burnin,
         sampleIterations=samples,
         threadCount=threads)
     print("started sampling:")
     start = time.time()
     mpi_sampler.startSampling()
     end = time.time()
     tics = end - start
     print("The time taken %.2f sec. done!" % tics)
     print('Done!')
Example #2
0
    def mcmc_CH(self, walkerRatio, n_run, n_burn, mean_start, sigma_start, lowerLimit, upperLimit, threadCount=1, init_pos=None, mpi_monch=False):
        """
        runs mcmc on the parameter space given parameter bounds with CosmoHammerSampler
        returns the chain
        """
        params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T

        chain = LikelihoodComputationChain(
            min=lowerLimit,
            max=upperLimit)

        temp_dir = tempfile.mkdtemp("Hammer")
        file_prefix = os.path.join(temp_dir, "logs")

        # chain.addCoreModule(CambCoreModule())
        chain.addLikelihoodModule(self.chain)
        chain.setup()

        store = InMemoryStorageUtil()
        if mpi_monch is True:
            sampler = MpiCosmoHammerSampler(
            params=params,
            likelihoodComputationChain=chain,
            filePrefix=file_prefix,
            walkersRatio=walkerRatio,
            burninIterations=n_burn,
            sampleIterations=n_run,
            threadCount=1,
            initPositionGenerator=init_pos,
            storageUtil=store)
        else:
            sampler = CosmoHammerSampler(
                params=params,
                likelihoodComputationChain=chain,
                filePrefix=file_prefix,
                walkersRatio=walkerRatio,
                burninIterations=n_burn,
                sampleIterations=n_run,
                threadCount=threadCount,
                initPositionGenerator=init_pos,
                storageUtil=store)
        time_start = time.time()
        #if sampler.isMaster():
        #    print('Computing the MCMC...')
        #    print('Number of walkers = ', len(mean_start)*walkerRatio)
        #    print('Burn-in itterations: ', n_burn)
        #    print('Sampling itterations:', n_run)
        sampler.startSampling()
        #if sampler.isMaster():
        #    time_end = time.time()
        #    print(time_end - time_start, 'time taken for MCMC sampling')
        # if sampler._sampler.pool is not None:
        #     sampler._sampler.pool.close()
        try:
            shutil.rmtree(temp_dir)
        except Exception as ex:
            print(ex)
            pass
        return store.samples, store.prob
Example #3
0
    def mcmc_CH(self, walkerRatio, n_run, n_burn, mean_start, sigma_start, threadCount=1, init_pos=None, mpi_monch=False):
        """
        runs mcmc on the parameter space given parameter bounds with CosmoHammerSampler
        returns the chain
        """
        lowerLimit, upperLimit = self.cosmoParam.param_bounds
        params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T

        chain = LikelihoodComputationChain(
            min=lowerLimit,
            max=upperLimit)

        temp_dir = tempfile.mkdtemp("Hammer")
        file_prefix = os.path.join(temp_dir, "logs")

        # chain.addCoreModule(CambCoreModule())
        chain.addLikelihoodModule(self.chain)
        chain.setup()

        store = InMemoryStorageUtil()
        if mpi_monch is True:
            sampler = MpiCosmoHammerSampler(
            params=params,
            likelihoodComputationChain=chain,
            filePrefix=file_prefix,
            walkersRatio=walkerRatio,
            burninIterations=n_burn,
            sampleIterations=n_run,
            threadCount=1,
            initPositionGenerator=init_pos,
            storageUtil=store)
        else:
            sampler = CosmoHammerSampler(
                params=params,
                likelihoodComputationChain=chain,
                filePrefix=file_prefix,
                walkersRatio=walkerRatio,
                burninIterations=n_burn,
                sampleIterations=n_run,
                threadCount=threadCount,
                initPositionGenerator=init_pos,
                storageUtil=store)
        time_start = time.time()
        if sampler.isMaster():
            print('Computing the MCMC...')
            print('Number of walkers = ', len(mean_start)*walkerRatio)
            print('Burn-in itterations: ', n_burn)
            print('Sampling itterations:', n_run)
        sampler.startSampling()
        if sampler.isMaster():
            time_end = time.time()
            print(time_end - time_start, 'time taken for MCMC sampling')
        # if sampler._sampler.pool is not None:
        #     sampler._sampler.pool.close()
        try:
            shutil.rmtree(temp_dir)
        except Exception as ex:
            print(ex)
            pass
        return store.samples
Example #4
0
    def mcmc_CH(self,
                walkerRatio,
                n_run,
                n_burn,
                mean_start,
                sigma_start,
                threadCount=1,
                init_pos=None,
                mpi=False):
        """
        runs mcmc on the parameter space given parameter bounds with CosmoHammerSampler
        returns the chain
        """
        lowerLimit, upperLimit = self.lower_limit, self.upper_limit

        mean_start = np.maximum(lowerLimit, mean_start)
        mean_start = np.minimum(upperLimit, mean_start)

        low_start = mean_start - sigma_start
        high_start = mean_start + sigma_start
        low_start = np.maximum(lowerLimit, low_start)
        high_start = np.minimum(upperLimit, high_start)
        sigma_start = (high_start - low_start) / 2
        mean_start = (high_start + low_start) / 2
        params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T

        chain = LikelihoodComputationChain(min=lowerLimit, max=upperLimit)

        temp_dir = tempfile.mkdtemp("Hammer")
        file_prefix = os.path.join(temp_dir, "logs")
        #file_prefix = "./lenstronomy_debug"
        # chain.addCoreModule(CambCoreModule())
        chain.addLikelihoodModule(self.chain)
        chain.setup()

        store = InMemoryStorageUtil()
        #store = None
        if mpi is True:
            sampler = MpiCosmoHammerSampler(params=params,
                                            likelihoodComputationChain=chain,
                                            filePrefix=file_prefix,
                                            walkersRatio=walkerRatio,
                                            burninIterations=n_burn,
                                            sampleIterations=n_run,
                                            threadCount=1,
                                            initPositionGenerator=init_pos,
                                            storageUtil=store)
        else:
            sampler = CosmoHammerSampler(params=params,
                                         likelihoodComputationChain=chain,
                                         filePrefix=file_prefix,
                                         walkersRatio=walkerRatio,
                                         burninIterations=n_burn,
                                         sampleIterations=n_run,
                                         threadCount=threadCount,
                                         initPositionGenerator=init_pos,
                                         storageUtil=store)
        time_start = time.time()
        if sampler.isMaster():
            print('Computing the MCMC...')
            print('Number of walkers = ', len(mean_start) * walkerRatio)
            print('Burn-in iterations: ', n_burn)
            print('Sampling iterations:', n_run)
        sampler.startSampling()
        if sampler.isMaster():
            time_end = time.time()
            print(time_end - time_start, 'time taken for MCMC sampling')
        # if sampler._sampler.pool is not None:
        #     sampler._sampler.pool.close()
        try:
            shutil.rmtree(temp_dir)
        except Exception as ex:
            print(ex, 'shutil.rmtree did not work')
            pass
        #samples = np.loadtxt(file_prefix+".out")
        #prob = np.loadtxt(file_prefix+"prob.out")
        return store.samples, store.prob
Example #5
0
# if mins, and maxs included, the code performs checkin
# and can calculate a null iteration of Generated Quantities in case of rejection
chain = LikelihoodComputationChain()
coremodule = CoreModule(szs)
logPosterior = LogPosteriorModule(data, threads=k)
# logPosterior = LogPosteriorModule(data,hypr)
chain.addCoreModule(coremodule)
chain.addLikelihoodModule(logPosterior)
chain.setup()
#---------- Initial Position Generator --------
pos_gen = UniformIntervalPositionGenerator()
############################## SAMPLER ########################################
#-------- Writes Derived parameters into a file------
storageUtil = DerivedParamterFileUtil(samp)
#------------- Setup the sampler -----------
sampler = CHSampler(params=params,
                    likelihoodComputationChain=chain,
                    filePrefix=samp,
                    walkersRatio=wr,
                    burninIterations=Nbi,
                    sampleIterations=Nit,
                    storageUtil=storageUtil,
                    initPositions=positions,
                    threadCount=1,
                    initPositionGenerator=pos_gen)
#----------------------- Start sampling-------------------------
sampler._sampler.a = a
sampler.startSampling()
print "Done!"
sys.exit(0)
Example #6
0
        path2chain = args.path2rerunchain
        sampler = CosmoHammerSampler(
            params=params,
            likelihoodComputationChain=chain,
            filePrefix=get_output_fname(config, path2chain),
            walkersRatio=ch_config_params['walkersRatio'],
            burninIterations=ch_config_params['burninIterations'],
            sampleIterations=ch_config_params['sampleIterations'],
            initPositionGenerator=InitializeFromChain(ch_config_params['path2rerunchain'], fraction=0.8))
else:
    if ch_config_params['rerun'] == 0:
        sampler = MpiCosmoHammerSampler(
            params=params,
            likelihoodComputationChain=chain,
            filePrefix=get_output_fname(config, path2chain),
            walkersRatio=ch_config_params['walkersRatio'],
            burninIterations=ch_config_params['burninIterations'],
            sampleIterations=ch_config_params['sampleIterations'])
    else:
        assert ch_config_params[
                   'path2rerunchain'] is not None, 'rerun is {}, but path to rerun chains not set. Aborting.'.format(
            ch_config_params['rerun'])
        sampler = MpiCosmoHammerSampler(
            params=params,
            likelihoodComputationChain=chain,
            filePrefix=get_output_fname(config, path2chain),
            walkersRatio=ch_config_params['walkersRatio'],
            burninIterations=ch_config_params['burninIterations'],
            sampleIterations=ch_config_params['sampleIterations'],
            initPositionGenerator=InitializeFromChain(ch_config_params['path2rerunchain'], fraction=0.8))
Example #7
0
                ("NoH", [750.0, 10.0, 1510.0, 1.0]))
#==========The parameter space is defined================================#
#======================================================================================================================#

chain = LikelihoodComputationChain(min=params[:, 1], max=params[:, 2])

chain.addCoreModule(
    PScore())  #=========setting up the modules===================#

chain.addLikelihoodModule(slk())

chain.setup()
#======================================================================================================================#

sampler = MpiCosmoHammerSampler(
    params=params,
    likelihoodComputationChain=
    chain,  #=============mpi sampler===============================#
    filePrefix="Powerspectrum_THANN_",
    walkersRatio=10,
    burninIterations=250,
    sampleIterations=250)

#======================================================================================================================#

print("start sampling: Here we go with the power of zeus.")
sampler.startSampling()
print("done!")

#======================================================================================================================#
Example #8
0
from wmap9Wrapper import WmapExtLikelihoodModule as wmap9
from cambWrapper import CambCoreModule

#parameter start center, min, max, start width
params = Params(
    ("hubble", [70, 65, 80, 3]), ("ombh2", [0.0226, 0.01, 0.03, 0.001]),
    ("omch2", [0.122, 0.09, 0.2, 0.01]),
    ("scalar_amp", [2.1e-9, 1.8e-9, 2.35e-9, 1e-10]),
    ("scalar_spectral_index", [0.96, 0.8, 1.2, 0.02]),
    ("re_optical_depth", [0.09, 0.01, 0.1, 0.03]), ("sz_amp", [1, 0, 2, 0.4]))

chain = LikelihoodComputationChain(min=params[:, 1], max=params[:, 2])

camb = CambCoreModule.CambCoreModule()

chain.addCoreModule(camb)

chain.addLikelihoodModule(wmap9.WmapExtLikelihoodModule())

chain.setup()

sampler = MpiCosmoHammerSampler(params=params,
                                likelihoodComputationChain=chain,
                                filePrefix="cosmoHammerWmap9_",
                                walkersRatio=20,
                                burninIterations=0,
                                sampleIterations=50)

print("start sampling")
sampler.startSampling()
print("done!")
Example #9
0
                ("ombh2",                 [0.0226, 0.01, 0.03, 0.001]),
                ("omch2",                 [0.122, 0.09, 0.2, 0.01]),
                ("scalar_amp",            [2.1e-9, 1.8e-9, 2.35e-9, 1e-10]),
                ("scalar_spectral_index", [0.96, 0.8, 1.2, 0.02]),
                ("re_optical_depth",      [0.09, 0.01, 0.1, 0.03]),
                ("sz_amp",                [1,0,2,0.4]))

chain = LikelihoodComputationChain(
                    min=params[:,1], 
                    max=params[:,2])

camb = CambCoreModule.CambCoreModule()

chain.addCoreModule(camb)

chain.addLikelihoodModule(wmap9.WmapExtLikelihoodModule())

chain.setup()


sampler = MpiCosmoHammerSampler(
                params= params, 
                likelihoodComputationChain=chain, 
                filePrefix="cosmoHammerWmap9_", 
                walkersRatio=20, 
                burninIterations=0, 
                sampleIterations=50)

print("start sampling")
sampler.startSampling()
print("done!")