Example #1
0
def fit_(x, y, theta, alpha, max_iter):
    while cost_(y, predict_(x, theta)) != 0 and max_iter != 0:
        theta[0] = float(theta[0] - alpha * (gradient(x, y, theta)[0]))
        theta[1] = float(theta[1] - alpha * (gradient(x, y, theta)[1]))
        max_iter -= 1
    return (np.array(theta))
import numpy as np
from cost import cost_

X = np.array([0, 15, -9, 7, 12, 3, -21])
Y = np.array([2, 14, -13, 5, 12, 4, -19])

# Example 1:
print(cost_(X, Y))
# Output:
# 4.285714285714286

# # Example 2:
print(cost_(X, X))
# Output:
# 0.0
Example #3
0
def test5():
    # Example 5:
    print(y3)
    print(y_hat3)
    assert cost_(y3, y_hat3) == 4.285714285714286 / 2
Example #4
0
def test6():
    # Example 6:
    assert cost_(y3, y3) == 0.0
Example #5
0
def test2():
    # Example 2:
    assert cost_(y1, y_hat1) == 3.0
Example #6
0
def test4():
    # Example 4:
    assert cost_(y2, y_hat2) == 4.238750000000004
x1 = np.array([[0.], [1.], [2.], [3.], [4.]])
theta1 = np.array([[2.], [4.]])

y_hat1 = predict_(x1, theta1)
print(y_hat1)

y1 = np.array([[2.], [7.], [12.], [17.], [22.]])

# Example 1:
print(cost_elem_(y1, y_hat1))
# Output:
# array([[0.], [0.1], [0.4], [0.9], [1.6]])

# Example 2:
print(cost_(y1, y_hat1))
# Output:
# 3.0

x2 = np.array([[0.2, 2., 20.], [0.4, 4., 40.], [0.6, 6., 60.], [0.8, 8., 80.]])
theta2 = np.array([[0.05], [1.], [1.], [1.]])
y_hat2 = predict_(x2, theta2)
y2 = np.array([[19.], [42.], [67.], [93.]])

# Example 3:
print(cost_elem_(y2, y_hat2))
# Output:
# array([[1.3203125], [0.7503125], [0.0153125], [2.1528125]])

# Example 4:
print(cost_(y2, y_hat2))
Example #8
0
from cost import cost_elem_, cost_, mse
from prediction import predict_
import numpy as np

X = np.array([0, 15, -9, 7, 12, 3, -21])
Y = np.array([2, 14, -13, 5, 12, 4, -19])

print(cost_(X, Y))
Example #9
0
#!/usr/bin/env python3
from cost import cost_, cost_elem_
from prediction import predict_
import numpy as np

x1 = np.array([[0.], [1.], [2.], [3.], [4.]])
theta1 = np.array([[2.], [4.]])
y_hat1 = predict_(x1, theta1)
y1 = np.array([[2.], [7.], [12.], [17.], [22.]])

output = cost_elem_(y1, y_hat1)
print('Example 1:', output.tolist())
#assert np.array_equal(output, [[0.], [0.1], [0.4], [0.9], [1.6]])

output = cost_(y1, y_hat1)
print('Example 2:', output)

x2 = np.array([[0.2, 2., 20.], [0.4, 4., 40.], [0.6, 6., 60.], [0.8, 8., 80.]])
theta2 = np.array([[0.05], [1.], [1.], [1.]])
y_hat2 = predict_(x2, theta2)
y2 = np.array([[19.], [42.], [67.], [93.]])

output = cost_elem_(y2, y_hat2)
print('Example 3:', output.tolist())

output = cost_(y2, y_hat2)
print('Example 4:', output)

x3 = np.array([0, 15, -9, 7, 12, 3, -21])
theta3 = np.array([[0.], [1.]])
y_hat3 = predict_(x3, theta3)
Example #10
0
from cost import cost_elem_, cost_
from prediction import predict_
import numpy as np

x1 = np.arange(0, 5)
theta1 = np.array([2, 4])
y_hat1 = predict_(x1, theta1)
y1 = np.array([2, 7, 12, 17, 22])
print(repr(cost_elem_(y1, y_hat1)))
print(repr(cost_(y1, y_hat1)))
Example #11
0
#!/usr/bin/env python3
import numpy as np
from cost import cost_

X = np.array([0, 15, -9, 7, 12, 3, -21])
Y = np.array([2, 14, -13, 5, 12, 4, -19])

# Example 1:
output = cost_(X, Y)
print(output)
assert output == 4.285714285714286

# Example 2:
output = cost_(X, X)
print(output)
assert output == 0.0