def test_import2strains(do_plot=False, do_show=True, do_save=False): sc.heading('Test introducing 2 new strains partway through a sim') b117 = cv.strain('b117', days=1, n_imports=20) p1 = cv.strain('sa variant', days=2, n_imports=20) sim = cv.Sim(use_waning=True, strains=[b117, p1], label='With imported infections', **base_pars) sim.run() return sim
def test_msim(do_plot=False): sc.heading('Testing multisim...') # basic test for vaccine b117 = cv.strain('b117', days=0) sim = cv.Sim(use_waning=True, strains=[b117], **base_pars) msim = cv.MultiSim(sim, n_runs=2) msim.run() msim.reduce() to_plot = sc.objdict({ 'Total infections': ['cum_infections'], 'New infections per day': ['new_infections'], 'New Re-infections per day': ['new_reinfections'], }) if do_plot: msim.plot(to_plot=to_plot, do_save=0, do_show=1, legend_args={'loc': 'upper left'}, axis_args={'hspace': 0.4}, interval=35) return msim
def test_strains(do_plot=False): sc.heading('Testing strains...') b117 = cv.strain('b117', days=10, n_imports=20) p1 = cv.strain('sa variant', days=20, n_imports=20) cust = cv.strain(label='Custom', days=40, n_imports=20, strain={ 'rel_beta': 2, 'rel_symp_prob': 1.6 }) sim = cv.Sim(base_pars, use_waning=True, strains=[b117, p1, cust]) sim.run() if do_plot: sim.plot('overview-strain') return sim
def test_vaccines(do_plot=False): sc.heading('Testing vaccines...') p1 = cv.strain('sa variant', days=20, n_imports=20) pfizer = cv.vaccinate(vaccine='pfizer', days=30) sim = cv.Sim(base_pars, use_waning=True, strains=p1, interventions=pfizer) sim.run() if do_plot: sim.plot('overview-strain') return sim
def test_import2strains_changebeta(do_plot=False, do_show=True, do_save=False): sc.heading( 'Test introducing 2 new strains partway through a sim, with a change_beta intervention' ) strain2 = {'rel_beta': 1.5, 'rel_severe_prob': 1.3} strain3 = {'rel_beta': 2, 'rel_symp_prob': 1.6} intervs = cv.change_beta(days=[5, 20, 40], changes=[0.8, 0.7, 0.6]) strains = [ cv.strain(strain=strain2, days=10, n_imports=20), cv.strain(strain=strain3, days=30, n_imports=20), ] sim = cv.Sim(use_waning=True, interventions=intervs, strains=strains, label='With imported infections', **base_pars) sim.run() return sim
def test_import1strain(do_plot=False, do_show=True, do_save=False): sc.heading('Test introducing a new strain partway through a sim') strain_pars = { 'rel_beta': 1.5, } pars = {'beta': 0.01} strain = cv.strain(strain_pars, days=1, n_imports=20, label='Strain 2: 1.5x more transmissible') sim = cv.Sim(use_waning=True, pars=pars, strains=strain, analyzers=cv.snapshot(30, 60), **pars, **base_pars) sim.run() return sim
def test_importstrain_longerdur(do_plot=False, do_show=True, do_save=False): sc.heading( 'Test introducing a new strain with longer duration partway through a sim' ) pars = sc.mergedicts(base_pars, { 'n_days': 120, }) strain_pars = { 'rel_beta': 1.5, } strain = cv.strain(strain=strain_pars, label='Custom strain', days=10, n_imports=30) sim = cv.Sim(use_waning=True, pars=pars, strains=strain, label='With imported infections') sim.run() return sim
def make_sim(seed, beta, calibration=True, future_symp_test=None, scenario=None, end_day='2021-10-30', verbose=0): # Set the parameters #total_pop = 67.86e6 # UK population size total_pop = 55.98e6 # UK population size pop_size = 100e3 # Actual simulated population pop_scale = int(total_pop / pop_size) pop_type = 'hybrid' pop_infected = 1000 beta = beta asymp_factor = 2 contacts = {'h': 3.0, 's': 20, 'w': 20, 'c': 20} beta_layer = {'h': 3.0, 's': 1.0, 'w': 0.6, 'c': 0.3} if end_day is None: end_day = '2021-05-05' pars = sc.objdict( use_waning=True, pop_size=pop_size, pop_infected=pop_infected, pop_scale=pop_scale, pop_type=pop_type, start_day=start_day, end_day=end_day, beta=beta, asymp_factor=asymp_factor, contacts=contacts, rescale=True, rand_seed=seed, verbose=verbose, #rel_symp_prob = 1.1, #rel_severe_prob = 0.45, #rel_crit_prob = 1.0, #rel_death_prob=1.15, ) sim = cv.Sim(pars=pars, datafile=data_path, location='uk') sim['prognoses']['sus_ORs'][0] = 1.0 # ages 20-30 sim['prognoses']['sus_ORs'][1] = 1.0 # ages 20-30 # ADD BETA INTERVENTIONS sbv = 0.63 beta_past = sc.odict({ '2020-02-14': [1.00, 1.00, 0.90, 0.90], '2020-03-16': [1.00, 0.90, 0.80, 0.80], '2020-03-23': [1.29, 0.02, 0.20, 0.20], '2020-06-01': [1.00, 0.23, 0.40, 0.40], '2020-06-15': [1.00, 0.38, 0.50, 0.50], '2020-07-22': [1.29, 0.00, 0.30, 0.50], '2020-09-02': [1.25, sbv, 0.50, 0.70], '2020-10-01': [1.25, sbv, 0.50, 0.70], '2020-10-16': [1.25, sbv, 0.50, 0.70], '2020-10-26': [1.00, 0.00, 0.50, 0.70], '2020-11-05': [1.25, sbv, 0.30, 0.40], '2020-11-14': [1.25, sbv, 0.30, 0.40], '2020-11-21': [1.25, sbv, 0.30, 0.40], '2020-11-30': [1.25, sbv, 0.30, 0.40], '2020-12-03': [1.50, sbv, 0.50, 0.70], '2020-12-20': [1.25, 0.00, 0.50, 0.70], '2020-12-25': [1.50, 0.00, 0.20, 0.70], '2020-12-26': [1.50, 0.00, 0.20, 0.70], '2020-12-31': [1.50, 0.00, 0.20, 0.70], '2021-01-01': [1.50, 0.00, 0.20, 0.70], '2021-01-04': [1.25, 0.14, 0.30, 0.40], '2021-01-11': [1.25, 0.14, 0.30, 0.40], '2021-01-18': [1.25, 0.14, 0.30, 0.40], '2021-01-18': [1.25, 0.14, 0.30, 0.40], '2021-01-30': [1.25, 0.14, 0.30, 0.40], '2021-02-08': [1.25, 0.14, 0.30, 0.40], '2021-02-15': [1.25, 0.14, 0.30, 0.40], '2021-02-22': [1.25, 0.14, 0.30, 0.40], '2021-03-08': [1.25, sbv, 0.30, 0.50], '2021-03-15': [1.25, sbv, 0.30, 0.50], '2021-03-22': [1.25, sbv, 0.30, 0.50], '2021-03-29': [1.25, 0.02, 0.30, 0.50], '2021-04-05': [1.25, 0.02, 0.30, 0.50], '2021-04-12': [1.25, 0.02, 0.40, 0.60], '2021-04-19': [1.25, sbv, 0.40, 0.60], '2021-04-26': [1.25, sbv, 0.40, 0.60], '2021-05-03': [1.25, sbv, 0.40, 0.60], '2021-05-10': [1.25, sbv, 0.40, 0.60], '2021-05-17': [1.25, sbv, 0.50, 0.70], '2021-05-21': [1.25, sbv, 0.50, 0.70], '2021-05-28': [1.25, 0.02, 0.50, 0.70], }) if not calibration: ##no schools until 8th March but assue 20% (1 in 5) in schools between 04/01-22/02; ##model transmission remaining at schools as 14% (to account for 30% reduction due to school measures) ## reopening schools on 8th March, society stage 1 29th March, society stage 2 12th April, ## society some more (stage 3) 17th May and everything (stage 4) 21st June 2021. ## Projecting until end of 2021. if scenario == 'Roadmap_All': beta_scens = sc.odict({ '2021-05-03': [1.25, sbv, 0.40, 0.60], '2021-05-10': [1.25, sbv, 0.40, 0.60], '2021-05-17': [1.25, sbv, 0.50, 0.70], '2021-05-21': [1.25, sbv, 0.50, 0.70], '2021-05-28': [1.25, 0.02, 0.50, 0.70], '2021-06-07': [1.25, sbv, 0.50, 0.70], '2021-06-14': [1.25, sbv, 0.50, 0.70], '2021-06-21': [1.25, sbv, 0.70, 0.90], '2021-06-28': [1.25, sbv, 0.70, 0.90], '2021-07-05': [1.25, sbv, 0.70, 0.90], '2021-07-12': [1.25, sbv, 0.70, 0.90], '2021-07-19': [1.25, 0.00, 0.70, 0.90], '2021-07-26': [1.25, 0.00, 0.70, 0.90], '2021-08-02': [1.25, 0.00, 0.70, 0.90], '2021-08-16': [1.25, 0.00, 0.70, 0.90], '2021-09-01': [1.25, 0.63, 0.70, 0.90], '2021-09-15': [1.25, 0.63, 0.70, 0.90], '2021-09-29': [1.25, 0.63, 0.70, 0.90], '2021-10-13': [1.25, 0.63, 0.70, 0.90], '2021-10-27': [1.25, 0.02, 0.70, 0.90], '2021-11-08': [1.25, 0.63, 0.70, 0.90], '2021-11-23': [1.25, 0.63, 0.70, 0.90], '2021-11-30': [1.25, 0.63, 0.70, 0.90], '2021-12-07': [1.25, 0.63, 0.70, 0.90], '2021-12-21': [1.25, 0.63, 0.70, 0.90], }) ## reopening schools on 8th March, society stage 1 29th March, society stage 2 12th April ONLY ## NO (stage 3) 17th May and NO stage 4 21st June 2021. ## Projecting until end of 2021. #elif scenario == 'Roadmap_Stage2': #beta_scens = sc.odict({'2021-04-12': [1.25, 0.02, 0.40, 0.70], # '2021-04-19': [1.25, sbv, 0.40, 0.70], # '2021-04-26': [1.25, sbv, 0.40, 0.70], # '2021-05-03': [1.25, sbv, 0.40, 0.70], # '2021-05-10': [1.25, sbv, 0.40, 0.70], # '2021-05-17': [1.25, sbv, 0.40, 0.70], # '2021-05-21': [1.25, sbv, 0.40, 0.70], # '2021-05-28': [1.25, 0.02, 0.40, 0.70], # '2021-06-07': [1.25, sbv, 0.40, 0.70], # '2021-06-21': [1.25, sbv, 0.40, 0.70], # '2021-06-28': [1.25, sbv, 0.40, 0.70], # '2021-07-05': [1.25, sbv, 0.40, 0.70], # '2021-07-12': [1.25, sbv, 0.40, 0.70], # '2021-07-19': [1.25, 0.00, 0.40, 0.70], # '2021-07-26': [1.25, 0.00, 0.40, 0.70], # '2021-08-02': [1.25, 0.00, 0.40, 0.70], # '2021-08-16': [1.25, 0.00, 0.40, 0.70], # '2021-09-01': [1.25, 0.63, 0.70, 0.90], # '2021-09-15': [1.25, 0.63, 0.70, 0.90], # '2021-09-29': [1.25, 0.63, 0.70, 0.90], # '2021-10-13': [1.25, 0.63, 0.70, 0.90], # '2021-10-27': [1.25, 0.02, 0.70, 0.90], # '2021-11-08': [1.25, 0.63, 0.70, 0.90], # '2021-11-23': [1.25, 0.63, 0.70, 0.90], # '2021-11-30': [1.25, 0.63, 0.70, 0.90], # '2021-12-07': [1.25, 0.63, 0.70, 0.90], # '2021-12-21': [1.25, 0.63, 0.70, 0.90], # }) ## reopening schools on 8th March, society stage 1 29th March, society stage 2 12th April, ## and society some more (stage 3) 17th May but NO stage 4 21st June 2021. ## Projecting until end of 2021. elif scenario == 'Roadmap_Stage3': beta_scens = sc.odict({ '2021-04-12': [1.25, 0.02, 0.40, 0.60], '2021-04-19': [1.25, sbv, 0.40, 0.60], '2021-04-26': [1.25, sbv, 0.40, 0.60], '2021-05-03': [1.25, sbv, 0.40, 0.60], '2021-05-10': [1.25, sbv, 0.40, 0.60], '2021-05-17': [1.25, sbv, 0.50, 0.70], '2021-05-21': [1.25, sbv, 0.50, 0.70], '2021-05-28': [1.25, 0.02, 0.50, 0.70], '2021-06-07': [1.25, sbv, 0.50, 0.70], '2021-06-14': [1.25, sbv, 0.50, 0.70], '2021-06-21': [1.25, sbv, 0.50, 0.70], '2021-06-28': [1.25, sbv, 0.50, 0.70], '2021-07-05': [1.25, sbv, 0.50, 0.70], '2021-07-12': [1.25, sbv, 0.50, 0.70], '2021-07-19': [1.25, 0.00, 0.50, 0.70], '2021-07-26': [1.25, 0.00, 0.50, 0.70], '2021-08-02': [1.25, 0.00, 0.50, 0.70], '2021-08-16': [1.25, 0.00, 0.50, 0.70], '2021-09-01': [1.25, 0.63, 0.70, 0.90], '2021-09-15': [1.25, 0.63, 0.70, 0.90], '2021-09-29': [1.25, 0.63, 0.70, 0.90], '2021-10-13': [1.25, 0.63, 0.70, 0.90], '2021-10-27': [1.25, 0.02, 0.70, 0.90], '2021-11-08': [1.25, 0.63, 0.70, 0.90], '2021-11-23': [1.25, 0.63, 0.70, 0.90], '2021-11-30': [1.25, 0.63, 0.70, 0.90], '2021-12-07': [1.25, 0.63, 0.70, 0.90], '2021-12-21': [1.25, 0.63, 0.70, 0.90], }) beta_dict = sc.mergedicts(beta_past, beta_scens) else: beta_dict = beta_past beta_days = list(beta_dict.keys()) h_beta = cv.change_beta(days=beta_days, changes=[c[0] for c in beta_dict.values()], layers='h') s_beta = cv.change_beta(days=beta_days, changes=[c[1] for c in beta_dict.values()], layers='s') w_beta = cv.change_beta(days=beta_days, changes=[c[2] for c in beta_dict.values()], layers='w') c_beta = cv.change_beta(days=beta_days, changes=[c[3] for c in beta_dict.values()], layers='c') # Add B.1.117 strain b117 = cv.strain('b117', days=np.arange(sim.day('2020-09-01'), sim.day('2020-09-10')), n_imports=100) sim['strains'] += [b117] # Add B.1.1351 strain b1351 = cv.strain('b1351', days=np.arange(sim.day('2020-11-20'), sim.day('2020-11-30')), n_imports=600) sim['strains'] += [b1351] # Add B.X.XXX strain starting middle of April custom_strain = cv.strain(label='custom', strain=cvp.get_strain_pars()['p1'], days=np.arange(sim.day('2021-03-10'), sim.day('2021-03-10')), n_imports=600) sim['strains'] += [custom_strain] # seems like we need to do this to deal with cross immunity?! sim.init_strains() sim.init_immunity() sim['immunity'] prior = {'wild': 0.5, 'b117': 0.8, 'b1351': 0.8, 'custom': 0.8} pre = {'wild': 0.5, 'b117': 0.8, 'b1351': 0.8, 'custom': 0.8} cross_immunities = cvp.get_cross_immunity() for k, v in sim['strain_map'].items(): if v == 'custom': for j, j_lab in sim['strain_map'].items(): sim['immunity'][k][j] = prior[j_lab] sim['immunity'][j][k] = pre[j_lab] #if j != k: # sim['immunity'][k][j] = cross_immunities['b117'][j_lab] # sim['immunity'][j][k] = cross_immunities[j_lab]['b117'] # # Add a new change in beta to represent the takeover of the novel variant VOC B117 202012/01 # # Assume that the new variant is 60% more transmisible (https://cmmid.github.io/topics/covid19/uk-novel-variant.html, # # Assume that between Nov 1 and Jan 30, the new variant grows from 0-100% of cases interventions = [h_beta, w_beta, s_beta, c_beta] # ADD TEST AND TRACE INTERVENTIONS tc_day = sim.day( '2020-03-16' ) #intervention of some testing (tc) starts on 16th March and we run until 1st April when it increases te_day = sim.day( '2020-04-01' ) #intervention of some testing (te) starts on 1st April and we run until 1st May when it increases tt_day = sim.day( '2020-05-01' ) #intervention of increased testing (tt) starts on 1st May tti_day = sim.day( '2020-06-01' ) #intervention of tracing and enhanced testing (tti) starts on 1st June tti_day_july = sim.day( '2020-07-01' ) #intervention of tracing and enhanced testing (tti) at different levels starts on 1st July tti_day_august = sim.day( '2020-08-01' ) #intervention of tracing and enhanced testing (tti) at different levels starts on 1st August tti_day_sep = sim.day('2020-09-01') tti_day_oct = sim.day('2020-10-01') tti_day_nov = sim.day('2020-11-01') tti_day_dec = sim.day('2020-12-01') tti_day_jan = sim.day('2021-01-01') tti_day_feb = sim.day('2021-02-01') tti_day_march = sim.day('2021-03-08') tti_day_april = sim.day('2021-03-01') #start of vaccinating those 75years+ tti_day_vac1 = sim.day('2021-01-03') #start of vaccinating 60+ old tti_day_vac2 = sim.day('2021-02-03') #start of vaccinating 55+ years old tti_day_vac3 = sim.day('2021-02-28') #start of vaccination 50+ years old tti_day_vac4 = sim.day('2021-03-10') #start vaccinating of 45+ tti_day_vac5 = sim.day('2021-03-30') #start vaccinating of 40+ tti_day_vac6 = sim.day('2021-04-20') #start vaccinating of 35+ tti_day_vac7 = sim.day('2021-05-05') #start vaccinating of 30+ tti_day_vac8 = sim.day('2021-05-30') #start vaccinating of 25+ tti_day_vac9 = sim.day('2021-06-10') #start vaccinating of 18+ tti_day_vac10 = sim.day('2021-06-30') #start vaccinating of 11-17 tti_day_vac11 = sim.day('2021-07-10') s_prob_april = 0.009 s_prob_may = 0.012 s_prob_june = 0.02769 s_prob_july = 0.02769 s_prob_august = 0.03769 tn = 0.09 s_prob_sep = 0.08769 s_prob_oct = 0.08769 s_prob_nov = 0.08769 s_prob_dec = 0.08769 s_prob_jan = 0.08769 #0.114=70%; 0.149=80%; 0.205=90% if future_symp_test is None: future_symp_test = s_prob_jan t_delay = 1.0 #isolation may-july iso_vals = [{k: 0.1 for k in 'hswc'}] #isolation august iso_vals1 = [{k: 0.7 for k in 'hswc'}] #isolation september iso_vals2 = [{k: 0.7 for k in 'hswc'}] #isolation october iso_vals3 = [{k: 0.7 for k in 'hswc'}] #isolation november iso_vals4 = [{k: 0.7 for k in 'hswc'}] #isolation december iso_vals5 = [{k: 0.7 for k in 'hswc'}] #isolation January-April #iso_vals6 = [{k:0.3 for k in 'hswc'}] #testing and isolation intervention interventions += [ cv.test_prob(symp_prob=0.009, asymp_prob=0.0, symp_quar_prob=0.0, start_day=tc_day, end_day=te_day - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_april, asymp_prob=0.0, symp_quar_prob=0.0, start_day=te_day, end_day=tt_day - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_may, asymp_prob=0.00076, symp_quar_prob=0.0, start_day=tt_day, end_day=tti_day - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_june, asymp_prob=0.00076, symp_quar_prob=0.0, start_day=tti_day, end_day=tti_day_july - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_july, asymp_prob=0.00076, symp_quar_prob=0.0, start_day=tti_day_july, end_day=tti_day_august - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_august, asymp_prob=0.0028, symp_quar_prob=0.0, start_day=tti_day_august, end_day=tti_day_sep - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_sep, asymp_prob=0.0028, symp_quar_prob=0.0, start_day=tti_day_sep, end_day=tti_day_oct - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_oct, asymp_prob=0.0028, symp_quar_prob=0.0, start_day=tti_day_oct, end_day=tti_day_nov - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_nov, asymp_prob=0.0063, symp_quar_prob=0.0, start_day=tti_day_nov, end_day=tti_day_dec - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_dec, asymp_prob=0.0063, symp_quar_prob=0.0, start_day=tti_day_dec, end_day=tti_day_jan - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_jan, asymp_prob=0.0063, symp_quar_prob=0.0, start_day=tti_day_jan, end_day=tti_day_feb - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_jan, asymp_prob=0.012, symp_quar_prob=0.0, start_day=tti_day_feb, end_day=tti_day_march - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_jan, asymp_prob=0.012, symp_quar_prob=0.0, start_day=tti_day_march, end_day=tti_day_april - 1, test_delay=t_delay), cv.test_prob(symp_prob=s_prob_jan, asymp_prob=0.012, symp_quar_prob=0.0, start_day=tti_day_april, test_delay=t_delay), cv.contact_tracing(trace_probs={ 'h': 1, 's': 0.8, 'w': 0.8, 'c': 0.05 }, trace_time={ 'h': 0, 's': 1, 'w': 1, 'c': 2 }, start_day='2020-06-01', end_day='2023-06-30', quar_period=10), #cv.contact_tracing(trace_probs={'h': 1, 's': 0.5, 'w': 0.5, 'c': 0.05}, # trace_time={'h': 0, 's': 1, 'w': 1, 'c': 2}, # start_day='2021-03-08', # quar_period=5), cv.dynamic_pars({'iso_factor': { 'days': te_day, 'vals': iso_vals }}), cv.dynamic_pars( {'iso_factor': { 'days': tti_day_august, 'vals': iso_vals1 }}), cv.dynamic_pars( {'iso_factor': { 'days': tti_day_sep, 'vals': iso_vals2 }}), cv.dynamic_pars( {'iso_factor': { 'days': tti_day_oct, 'vals': iso_vals3 }}), cv.dynamic_pars( {'iso_factor': { 'days': tti_day_nov, 'vals': iso_vals4 }}), cv.dynamic_pars( {'iso_factor': { 'days': tti_day_dec, 'vals': iso_vals5 }}) ] #cv.dynamic_pars({'rel_death_prob': {'days': tti_day_vac, 'vals': 0.9}})] #cv.vaccine(days=[0,14], rel_sus=0.4, rel_symp=0.2, cumulative=[0.7, 0.3])] # derived from AZ default params (3.0.2) with increased interval between doses) # dose_pars = cvp.get_vaccine_dose_pars()['az'] # dose_pars.update({'nab_interval': 14, 'interval':7*9}) # strain_pars = cvp.get_vaccine_strain_pars()['az'] # hard code them in dose_pars = { 'nab_eff': { 'sus': { 'slope': 1.6, 'n_50': 0.05 } }, 'nab_init': { 'dist': 'normal', 'par1': -0.85, 'par2': 2 }, 'nab_boost': 3, 'doses': 2, 'interval': 7 * 12, 'nab_interval': 14 } strain_pars = { 'wild': 1.0, 'b117': 1 / 2.3, 'b1351': 1 / 9, 'p1': 1 / 2.9, 'custom': 1 / 2.3 } vaccine = sc.mergedicts({'label': 'az_uk'}, sc.mergedicts(dose_pars, strain_pars)) # age targeted vaccination def subtarget_75_100(sim): inds = cv.true(sim.people.age >= 75) return {'inds': inds, 'vals': 0.020 * np.ones(len(inds))} interventions += [ utils_vac.vaccinate(vaccine=vaccine, prob=0.1, subtarget=subtarget_75_100, days=np.arange(sim.day('2020-12-20'), sim.day('2023-01-01'))) ] def subtarget_60_75(sim): inds = cv.true((sim.people.age >= 60) & (sim.people.age < 75)) return {'inds': inds, 'vals': 0.020 * np.ones(len(inds))} interventions += [ utils_vac.vaccinate(vaccine=vaccine, prob=0.1, subtarget=subtarget_60_75, days=np.arange(sim.day('2021-01-28'), sim.day('2023-01-01'))) ] def subtarget_50_60(sim): inds = cv.true((sim.people.age >= 50) & (sim.people.age < 60)) return {'inds': inds, 'vals': 0.010 * np.ones(len(inds))} interventions += [ utils_vac.vaccinate(vaccine=vaccine, prob=0.1, subtarget=subtarget_50_60, days=np.arange(sim.day('2021-02-10'), sim.day('2023-01-01'))) ] def subtarget_40_50(sim): inds = cv.true((sim.people.age >= 40) & (sim.people.age < 50)) return {'inds': inds, 'vals': 0.005 * np.ones(len(inds))} interventions += [ utils_vac.vaccinate(vaccine=vaccine, prob=0.1, subtarget=subtarget_40_50, days=np.arange(sim.day('2021-04-10'), sim.day('2023-01-01'))) ] def subtarget_30_40(sim): inds = cv.true((sim.people.age >= 30) & (sim.people.age < 40)) return {'inds': inds, 'vals': 0.003 * np.ones(len(inds))} interventions += [ utils_vac.vaccinate(vaccine=vaccine, prob=0.1, subtarget=subtarget_30_40, days=np.arange(sim.day('2021-05-10'), sim.day('2023-01-01'))) ] def subtarget_18_30(sim): inds = cv.true((sim.people.age >= 18) & (sim.people.age < 30)) return {'inds': inds, 'vals': 0.003 * np.ones(len(inds))} interventions += [ utils_vac.vaccinate(vaccine=vaccine, prob=0.01, subtarget=subtarget_18_30, days=np.arange(sim.day('2021-06-10'), sim.day('2023-01-01'))) ] analyzers = [] #analyzers += [cv.age_histogram(datafile='uk_stats_by_age.xlsx', edges=np.concatenate([np.linspace(0, 90, 19),np.array([100])]))] # Finally, update the parameters sim.update_pars(interventions=interventions, analyzers=analyzers) # Change death and critical probabilities # interventions += [cv.dynamic_pars({'rel_death_prob':{'days':sim.day('2020-07-01'), 'vals':0.6}})] # Finally, update the parameters #sim.update_pars(interventions=interventions) for intervention in sim['interventions']: intervention.do_plot = False sim.initialize() return sim
import covasim as cv import numpy as np import covasim.parameters as cvp pars = {'use_waning': True, 'pop_infected': 100} sim = cv.Sim(pars=pars) #custom_strain = cv.strain(label='custom', strain=cvp.get_strain_pars()['b117'], # days=np.arange(20, 21), n_imports=40) #sim['strains'] += [custom_strain] b117 = cv.strain('b117', days=np.arange(sim.day('2020-03-01'), sim.day('2020-03-10')), n_imports=100) #im['strains'] += [b117] # Add B.1.1351 strain b1351 = cv.strain('b1351', days=np.arange(sim.day('2020-04-05'), sim.day('2020-04-20')), n_imports=200) #sim['strains'] += [b1351] custom_strain = cv.strain(label='custom', strain = cvp.get_strain_pars()['b1351'], days=np.arange(sim.day('2020-03-15'), sim.day('2020-03-30')), n_imports=40) sim['strains'] += [b117, b1351, custom_strain] sim.init_strains() sim.init_immunity() sim['immunity'] pre = {'wild': 0.0, 'b117': 0.0, 'b1351': 0.0, 'custom':1.0} prior = {'wild': 0.0, 'b117': 0.0, 'b1351': 0.0, 'custom': 1.0} cross_immunities = cvp.get_cross_immunity() for k, v in sim['strain_map'].items(): if v == 'custom': for j, j_lab in sim['strain_map'].items(): sim['immunity'][k][j] = prior[j_lab] sim['immunity'][j][k] = pre[j_lab] sim.run() sim.plot('strains', do_save=True, do_show=False, fig_path=f'uk_strain.png')
def test_varyingimmunity(do_plot=False, do_show=True, do_save=False): sc.heading('Test varying properties of immunity') # Define baseline parameters n_runs = 3 base_sim = cv.Sim(use_waning=True, n_days=400, pars=base_pars) # Define the scenarios b1351 = cv.strain('b1351', days=100, n_imports=20) scenarios = { 'baseline': { 'name': 'Default Immunity (decay at log(2)/90)', 'pars': { 'nab_decay': dict(form='nab_decay', decay_rate1=np.log(2) / 90, decay_time1=250, decay_rate2=0.001), }, }, 'faster_immunity': { 'name': 'Faster Immunity (decay at log(2)/30)', 'pars': { 'nab_decay': dict(form='nab_decay', decay_rate1=np.log(2) / 30, decay_time1=250, decay_rate2=0.001), }, }, 'baseline_b1351': { 'name': 'Default Immunity (decay at log(2)/90), B1351 on day 100', 'pars': { 'nab_decay': dict(form='nab_decay', decay_rate1=np.log(2) / 90, decay_time1=250, decay_rate2=0.001), 'strains': [b1351], }, }, 'faster_immunity_b1351': { 'name': 'Faster Immunity (decay at log(2)/30), B1351 on day 100', 'pars': { 'nab_decay': dict(form='nab_decay', decay_rate1=np.log(2) / 30, decay_time1=250, decay_rate2=0.001), 'strains': [b1351], }, }, } metapars = {'n_runs': n_runs} scens = cv.Scenarios(sim=base_sim, metapars=metapars, scenarios=scenarios) scens.run(debug=debug) to_plot = sc.objdict({ 'New infections': ['new_infections'], 'New re-infections': ['new_reinfections'], 'Population Nabs': ['pop_nabs'], 'Population Immunity': ['pop_protection'], }) if do_plot: scens.plot(do_save=do_save, do_show=do_show, fig_path='results/test_basic_immunity.png', to_plot=to_plot) return scens
def test_vaccine_2strains_scen(do_plot=False, do_show=True, do_save=False): sc.heading( 'Run a basic sim with b117 strain on day 10, pfizer vaccine day 20') # Define baseline parameters n_runs = 3 base_sim = cv.Sim(use_waning=True, pars=base_pars) # Vaccinate 75+, then 65+, then 50+, then 18+ on days 20, 40, 60, 80 base_sim.vxsubtarg = sc.objdict() base_sim.vxsubtarg.age = [75, 65, 50, 18] base_sim.vxsubtarg.prob = [.01, .01, .01, .01] base_sim.vxsubtarg.days = subtarg_days = [60, 150, 200, 220] jnj = cv.vaccinate(days=subtarg_days, vaccine='j&j', subtarget=vacc_subtarg) b1351 = cv.strain('b1351', days=10, n_imports=20) p1 = cv.strain('p1', days=100, n_imports=100) # Define the scenarios scenarios = { 'baseline': { 'name': 'B1351 on day 10, No Vaccine', 'pars': { 'strains': [b1351] } }, 'b1351': { 'name': 'B1351 on day 10, J&J starting on day 60', 'pars': { 'interventions': [jnj], 'strains': [b1351], } }, 'p1': { 'name': 'B1351 on day 10, J&J starting on day 60, p1 on day 100', 'pars': { 'interventions': [jnj], 'strains': [b1351, p1], } }, } metapars = {'n_runs': n_runs} scens = cv.Scenarios(sim=base_sim, metapars=metapars, scenarios=scenarios) scens.run(debug=debug) to_plot = sc.objdict({ 'New infections': ['new_infections'], 'Cumulative infections': ['cum_infections'], 'New reinfections': ['new_reinfections'], # 'Cumulative reinfections': ['cum_reinfections'], }) if do_plot: scens.plot(do_save=do_save, do_show=do_show, fig_path='results/test_vaccine_b1351.png', to_plot=to_plot) return scens