Example #1
0
def usdn_energy_v_hops(df_dict):
    """Plot usdn energy vs hops."""
    try:
        if 'app' in df_dict and 'pow' in df_dict:
            pow_df = df_dict['pow']
            app_df = df_dict['app']
        else:
            raise Exception('ERROR: Correct df(s) not in dict!')
    except Exception:
        traceback.print_exc()
        sys.exit(0)

    # Add hops to node_df. N.B. cols with NaN are always converted to float
    hops = app_df[['src', 'hops']].groupby('src').agg(lambda x: mode(x)[0])
    pow_df = pow_df.join(hops['hops'].astype(int))

    df = pow_df.groupby('hops')['all_rdc']    \
               .apply(lambda x: x.mean()) \
               .reset_index()             \
               .set_index('hops')
    x = df.index.tolist()
    y = df['all_rdc'].tolist()
    cpplot.plot_bar(df,
                    'usdn_energy_v_hops',
                    sim_dir,
                    x,
                    y,
                    xlabel='Hops',
                    ylabel='Radio duty cycle (%)')
Example #2
0
def usdn_pdr_v_hops(df_dict):
    """Plot usdn energy vs hops."""
    try:
        if 'app' in df_dict:
            app_df = df_dict['app']
        else:
            raise Exception('ERROR: Correct df(s) not in dict!')
    except Exception:
        traceback.print_exc()
        sys.exit(0)

    # Get hops for each node. N.B. cols with NaN are always converted to float
    df = app_df[['src', 'hops']].groupby('src').agg(lambda x: mode(x)[0])
    # Calculate PRR
    df['pdr'] = app_df.groupby('src')['drpd'] \
                      .apply(lambda x: ratio(len(x), x.sum()))

    df = df.groupby('hops')['pdr']    \
           .apply(lambda x: x.mean()) \
           .reset_index()             \
           .set_index('hops')
    x = df.index.tolist()
    y = df['pdr'].tolist()
    cpplot.plot_bar(df,
                    'usdn_pdr_v_hops',
                    sim_dir,
                    x,
                    y,
                    xlabel='Hops',
                    ylabel='PDR (%)')
Example #3
0
def atomic_op_times(df_dict):
    """Plot atomic op times."""
    df = df_dict['atomic-op'].copy()
    g = df.groupby('op_type')
    data = pd.DataFrame()

    for k, v in g:
        data[k] = pd.Series(v['op_duration'].mean())

    # # rearrage cols
    # data = data[['NONE', 'CLCT', 'CONF', 'RACT', 'ASSC']]
    # # rename cols
    # data = data.rename(columns={'NONE': 'IND',
    #                             'CLCT': 'COLLECT',
    #                             'CONF': 'CONFIGURE',
    #                             'RACT': 'REACT',
    #                             'ASSC': 'ASSOCIATE'})
    x = list(data.columns.values)
    y = data.values.tolist()[0]

    cpplot.plot_bar(df,
                    'atomic_op',
                    sim_dir,
                    x,
                    y,
                    xlabel='Op Type',
                    ylabel='Time(ms)')
Example #4
0
def energy_v_hops(df_dict, **kwargs):
    """Plot energy vs hops."""
    df_name = kwargs['df'] if 'df' in kwargs else None
    filename = kwargs['file'] if 'file' in kwargs else 'energy_v_hops'

    print('> Do energy_v_hops for ' + df_name)

    df = df_dict[df_name].copy()
    df.set_index('node', inplace=True)

    if 'all' in df_dict:
        df_all = df_dict['all'][df_dict['all']['node'] != 1]
        df['hops'] = df_all.groupby('node').apply(lambda x: x.hops.value_counts().index[0])
    elif 'node' in df_dict:
        df['hops'] = df_dict['node']['hops']

    # HACK: Why isnt the filter filtering for hops between 1 and 5?
    df = df[(df.hops <= 5) & (df.hops >= 1)]

    g = df.groupby('hops')
    data = {}
    for k, v in g:
        data[k] = v.groupby('node').last()['all_rdc'].mean()

    x = data.keys()
    y = data.values()

    if y is not list:
        y = list(y)

    cpplot.plot_bar(df, filename, sim_dir, x, y,
                    xlabel='Hops', ylabel='Radio Duty Cycle (%)')
    print('  ... RDC mean: ' + str(np.mean(y)))
Example #5
0
def atomic_op_times(df_dict, **kwargs):
    """Plot atomic op times."""
    df_name = kwargs['df'] if 'df' in kwargs else None
    packets = kwargs['packets'] if 'packets' in kwargs else None
    filename = kwargs['file'] if 'file' in kwargs else 'atomic_op_times'
    df = df_dict[df_name].copy()
    # print(df[df['type'] == 'CLCT'])
    # Filter df for packet types in packets
    if 'type' in df and packets is not None:
        df = df[df['type'].isin(packets)]
    g = df.groupby('type')
    data = pd.DataFrame()
    for k, v in g:
        data[k] = pd.Series(v['op_duration'].mean())

    # # rename cols
    data = data.rename(columns={'CONF': 'CONFIGURE',
                                'CLCT': 'COLLECT',
                                'RACT': 'REACT'})
    data = data[['CONFIGURE', 'COLLECT', 'REACT']]
    x = list(data.columns.values)
    y = data.values.tolist()[0]

    print('  ... Op time mean: ' + str(np.mean(y)))
    print('  ... Op time median: ' + str(np.median(y)))
    print('  ... Op time max: ' + str(np.max(y)))

    cpplot.plot_bar(df, filename, sim_dir, x, y,
                    xlabel='Op Type', ylabel='Time(ms)')
Example #6
0
def graph_traffic_ratio(df_dict, **kwargs):
    """Graph ratio of traffic for packets."""
    try:
        if 'sdn' in df_dict and 'icmp' in df_dict:
            sdn_df = df_dict['sdn']
            icmp_df = df_dict['icmp']
        else:
            raise Exception('ERROR: Correct df(s) not in dict!')
    except Exception:
        traceback.print_exc()
        sys.exit(0)

    cpplot.plot_bar(sdn_df, icmp_df, 'traffic_ratio', sim_dir)
Example #7
0
def usdn_traffic_ratio(df_dict):
    """Plot traffic ratios."""
    try:
        if 'app' in df_dict and 'icmp' in df_dict:
            app_df = df_dict['app']
            icmp_df = df_dict['icmp']
            if 'sdn' in df_dict:
                sdn_df = df_dict['sdn']
            else:
                sdn_df = None
        else:
            raise Exception('ERROR: Correct df(s) not in dict!')
    except Exception:
        traceback.print_exc()
        sys.exit(0)

    cpplot.plot_bar(app_df, sdn_df, icmp_df, 'traffic_ratio', sim_dir)
Example #8
0
def pdr_v_hops(df_dict, **kwargs):
    """Plot pdr vs hops."""
    df_name = kwargs['df'] if 'df' in kwargs else None
    packets = kwargs['packets'] if 'packets' in kwargs else None
    filename = kwargs['file'] if 'file' in kwargs else 'pdr_v_hops'

    print('> Do pdr_v_hops for ' + str(packets) + ' in ' + df_name)

    if packets is None:
        raise Exception('ERROR: No packets to search for!')

    df = df_dict[df_name].copy()

    print('  ... Total for df (' + df_name + ') = ' + str(df.shape[0]))

    if 'type' in df:
        df = df[df['type'].isin(packets)]

    missed = df.received.str.count('missed').sum()
    received = df.received.str.count('correct').sum()

    if 'drpd' not in df:
        df['drpd'] = np.where(df['received'] == 'missed', True, False)

    total = df.shape[0]

    print('  ... Total: ' + str(total))
    print('  ... Received: ' + str(received))
    print('  ... Missed: ' + str(missed))
    print('  ... Total PDR: ' + str(ratio(total, missed)))

    df_pdr = df.groupby('hops')['drpd'].apply(lambda x: ratio(len(x), x.sum()))
    df_pdr = df_pdr.groupby('hops')           \
                   .apply(lambda x: x.mean()) \
                   .reset_index()             \
                   .set_index('hops')

    x = df_pdr.index.tolist()
    y = df_pdr['drpd'].tolist()

    cpplot.plot_bar(df_pdr, filename, sim_dir, x, y,
                    xlabel='Hops', ylabel='End-to-end PDR (%)')
Example #9
0
def graph_pdr(df_dict, **kwargs):
    global hlp
    """Graph end-to-end PDR."""

    df_name = kwargs['df'] if 'df' in kwargs else None
    packets = kwargs['packets'] if 'packets' in kwargs else None
    filename = kwargs['file'] if 'file' in kwargs else 'pdr'
    xlabel = kwargs['xlabel'] if 'xlabel' in kwargs else packets

    df = df_dict[df_name].copy()

    if packets is not None:
        print('> Do packet_pdr for ' + str(packets) + ' in ' + df_name)
        df = df[df['type'].isin(packets)]
    else:
        print('> Do packet_pdr for ALL_PACKETS in ' + df_name)

    total = df.shape[0]
    missed = df.received.str.count('missed').sum()
    received = df.received.str.count('correct').sum()
    print('  ... Total: ' + str(total))
    print('  ... Received: ' + str(received))
    print('  ... Missed: ' + str(missed))
    print('  ... Total PDR: ' + str(ratio(total, missed)))

    if packets is not None:
        if 'drpd' not in df:
            df['drpd'] = np.where(df['received'] == 'missed', True, False)
        df_pdr = df.groupby('type')['drpd'].apply(lambda x: ratio(len(x), x.sum()))
        df_pdr = df_pdr.groupby('type')           \
                       .apply(lambda x: x.mean()) \
                       .reset_index()             \
                       .set_index('type')
        x = df_pdr.index.tolist()
        y = df_pdr['drpd'].tolist()
    else:
        x = [str(xlabel)]
        y = [ratio(total, missed)]

    cpplot.plot_bar(df, filename, sim_dir, x, y,
                    xlabel='Packet Type', ylabel='End-to-end PDR (%)')
Example #10
0
def atomic_energy_v_hops(df_dict):
    """Plot atomic energy vs hops."""
    try:
        if 'atomic-energy' in df_dict:
            df = df_dict['atomic-energy']
        else:
            raise Exception('ERROR: Correct df(s) not in dict!')
    except Exception:
        traceback.print_exc()
        sys.exit(0)
    g = df.groupby('hops')
    data = {}
    for k, v in g:
        # ignore the timesync (0 hops)
        if (k > 0):
            data[k] = v.groupby('id').last()['all_rdc'].mean()
    cpplot.plot_bar(df,
                    'atomic_energy_v_hops',
                    sim_dir,
                    data.keys(),
                    data.values(),
                    xlabel='Hops',
                    ylabel='Radio Duty Cycle (%)')
Example #11
0
def atomic_vs_usdn(df_dict):
    """Plot atomic vs usdn collect pdr and energy."""
    # PDR
    if 'usdn' in sim_type:
        # copy dfs
        df_node = df_dict['node'].copy().reset_index()
        df_sdn = df_dict['sdn'].copy()
        # take only NSU and drop any dropped packets
        df = df_sdn[(df_sdn['typ'] == 'NSU')]
        df = df.rename(columns={'lat': 'collect_time'})
        df = df[df['src'] != 1]
        df = df.merge(df_node, left_on='src', right_on='id')  # merge hops col
        df = df[(df['hops'] > 0) & (df['hops'] <= 5)]
    elif 'atomic' in sim_type:
        df = df_dict['atomic-op'].copy()
        df = df[df['op_type'] == 'CLCT']
        df['collect_time'] = df['c_time'].astype(int)
        df = df[df['hops'] != 0]
        df['drpd'] = np.where(df['collect_time'] == 0, True, False)
    else:
        raise Exception('ERROR: Unknown types!')

    df_pdr = df.groupby('hops')['drpd'] \
               .apply(lambda x: ratio(len(x), x.sum()))
    df_pdr = df_pdr.groupby('hops')           \
                   .apply(lambda x: x.mean()) \
                   .reset_index()             \
                   .set_index('hops')
    x = df_pdr.index.tolist()
    y = df_pdr['drpd'].tolist()
    cpplot.plot_bar(df_pdr,
                    'atomic_vs_usdn_collect_pdr',
                    sim_dir,
                    x,
                    y,
                    xlabel='Hops',
                    ylabel='End-to-end PDR (%)')

    # Energy
    if 'usdn' in sim_type:
        df_node = df_dict['node'].copy().reset_index()
        df = df_dict['pow'].copy().reset_index()
        df = df.merge(df_node, left_on='id', right_on='id')  # merge hops col
        df = df[(df['hops'] > 0) & (df['hops'] <= 5)]
    elif 'atomic' in sim_type:
        df = df_dict['atomic-energy'].copy()
        df = df[df['op_type'] == 'CLCT']
        df = df[df['hops'] != 0]
    else:
        raise Exception('ERROR: Unknown types!')
    g = df.groupby('hops')
    data = {}
    for k, v in g:
        data[k] = v.groupby('id').last()['all_rdc'].mean()

    x = data.keys()
    y = data.values()

    cpplot.plot_bar(df,
                    'atomic_vs_usdn_collect_energy',
                    sim_dir,
                    x,
                    y,
                    xlabel='Hops',
                    ylabel='Radio Duty Cycle (%)')