Example #1
0
    def test_numNonsharedFields_separateDim_differentNumberOfSlices(self):
        # Doing diffs with a separate_dim, where variable has a different number
        # of slices in the two variables. There should be one nonshared field
        # for each missing slice. Note that we treat this as non-shared, rather
        # than a dim-diff; this feels like the right thing to do, both in terms
        # of:
        # - By analogy to the fact that we treat each time slice as a separate
        #   variable for the sake of analysis
        # - It seems like this is more likely to do the Right Thing in the case
        #   of intentional / expected differences in the number of time slices in
        #   the file
        data1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
        data2 = np.array([[1, 2], [5, 6]])
        file1 = NetcdfFileFake(
            self.FILENAME1,
            variables={'var1': NetcdfVariableFake(data1, ('dim1', 'dim2'))})
        file2 = NetcdfFileFake(
            self.FILENAME2,
            variables={'var1': NetcdfVariableFake(data2, ('dim1', 'dim2'))})
        mydiffs = FileDiffs(file1, file2, separate_dim='dim2')
        num_nonshared = mydiffs.num_nonshared_fields()
        self.assertEqual(num_nonshared, 2)

        # Also make sure that other counts are correct in this case
        self.assertEqual(mydiffs.num_vars(), 4)
        self.assertEqual(mydiffs.num_vars_differ(), 0)
        self.assertEqual(mydiffs.num_dims_differ(), 0)
Example #2
0
 def test_numNonsharedFields_separateDim_withNonsharedUnseparatedFields(
         self):
     # Both files have var1; file1 has var2, whereas file2 has var3; those
     # unshared fields do not have the separate_dim
     data = np.array([[1, 2, 3], [4, 5, 6]])
     file1 = NetcdfFileFake(self.FILENAME1,
                            variables={
                                'var1':
                                NetcdfVariableFake(data, ('dim1', 'dim2')),
                                'var2':
                                NetcdfVariableFake(data, ('dim3', 'dim4'))
                            })
     file2 = NetcdfFileFake(self.FILENAME2,
                            variables={
                                'var1':
                                NetcdfVariableFake(data, ('dim1', 'dim2')),
                                'var3':
                                NetcdfVariableFake(data, ('dim3', 'dim4'))
                            })
     mydiffs = FileDiffs(file1, file2, separate_dim='dim2')
     num_nonshared = mydiffs.num_nonshared_fields()
     # Total number of nonshared fields is equal to (# in file1 not in file2)
     # + (# in file2 not in file1). The nonshared fields don't have the
     # separate_dim, so each is counted once.
     self.assertEqual(num_nonshared, 2)
Example #3
0
 def test_numMasksDiffer_with3Vars(self):
     file1 = NetcdfFileFake(self.FILENAME1,
                            variables={
                                'var1':
                                NetcdfVariableFake(
                                    np.ma.array([1, 2, 3],
                                                mask=[True, False, False])),
                                'var2':
                                NetcdfVariableFake(
                                    np.ma.array([4, 5, 6],
                                                mask=[False, True, False])),
                                'var3':
                                NetcdfVariableFake(
                                    np.ma.array([7, 8, 9],
                                                mask=[False, False, True]))
                            })
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={
             'var1':
             NetcdfVariableFake(
                 np.ma.array([1, 2, 3], mask=[False, True,
                                              False])),  # differs
             'var2':
             NetcdfVariableFake(
                 np.ma.array([4, 5, 6], mask=[False, True, False])),  # same
             'var3':
             NetcdfVariableFake(
                 np.ma.array([7, 8, 9], mask=[False, True, False]))
         })  # differs
     mydiffs = FileDiffs(file1, file2, separate_dim=None)
     num_differ = mydiffs.num_masks_differ()
     self.assertEqual(num_differ, 2)
Example #4
0
 def test_filesDiffer_withNoVarsAnalyzed(self):
     var_char = NetcdfVariableFake(np.array(['a', 'b', 'c']),
                                   is_numeric=False)
     file1 = NetcdfFileFake(self.FILENAME1, variables={'var1': var_char})
     file2 = NetcdfFileFake(self.FILENAME2, variables={'var1': var_char})
     mydiffs = FileDiffs(file1, file2, separate_dim=None)
     differ = mydiffs.files_differ()
     self.assertTrue(differ)
 def test_get_dimlist(self):
     var1 = NetcdfVariableFake(np.array([[1,2,3],[4,5,6]]),
                               dimnames=['dim1','dim2'])
     var2 = NetcdfVariableFake(np.array([[1,2,3],[4,5,6]]),
                               dimnames=['dim1','dim3'])
     fl = NetcdfFileFake('myfile', variables = {'var1':var1, 'var2':var2})
     mydims = sorted(fl.get_dimlist())
     self.assertEqual(['dim1','dim2','dim3'], mydims)
Example #6
0
 def test_filesDiffer_withDimsDiffer(self):
     file1 = NetcdfFileFake(
         self.FILENAME1,
         variables={'var1': NetcdfVariableFake(np.array([1, 2, 3]))})
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={'var1': NetcdfVariableFake(np.array([1, 2]))})
     mydiffs = FileDiffs(file1, file2, separate_dim=None)
     differ = mydiffs.files_differ()
     self.assertTrue(differ)
Example #7
0
 def test_str_separateDim(self):
     # Just a smoke test of the printing when separate_dim is given
     file1 = NetcdfFileFake(
         self.FILENAME1,
         variables={'var1': NetcdfVariableFake(np.array([1, 2, 3]))})
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={'var1': NetcdfVariableFake(np.array([1, 2, 4]))})
     mydiffs = FileDiffs(file1, file2, separate_dim='dim1')
     mystr = str(mydiffs)
Example #8
0
 def test_str_identical(self):
     file1 = NetcdfFileFake(
         self.FILENAME1,
         variables={'var1': NetcdfVariableFake(np.array([1, 2, 3]))})
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={'var1': NetcdfVariableFake(np.array([1, 2, 3]))})
     mydiffs = FileDiffs(file1, file2, separate_dim=None)
     mystr = str(mydiffs)
     self.assertRegexMatches(mystr, "diff_test.*IDENTICAL")
     self.assertNotRegexMatches(mystr, "diff_test.*DIFFERENT")
Example #9
0
 def test_filesDiffer_withDifferentVars(self):
     # Files with different variables should differ
     data = np.array([1, 2, 3, 4])
     file1 = NetcdfFileFake(
         self.FILENAME1,
         # Tuples with only one string must have a comma appended
         variables={'var1': NetcdfVariableFake(data, ('dim', ))})
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={'var4': NetcdfVariableFake(data, ('dim', ))})
     mydiffs = FileDiffs(file1, file2, separate_dim='dim2')
     differ = mydiffs.files_differ()
     self.assertTrue(differ)
Example #10
0
 def test_numVarsDiffer_withVariableSeparatedByDim(self):
     # make sure that filediffs separates a variable by some dimension if
     # requested to do so
     data = np.array([[1, 2, 3], [4, 5, 6]])
     data_plus_1 = data + 1
     variable = NetcdfVariableFake(data, ('dim1', 'dim2'))
     variable_plus_1 = NetcdfVariableFake(data_plus_1, ('dim1', 'dim2'))
     file1 = NetcdfFileFake(self.FILENAME1, variables={'var1': variable})
     file2 = NetcdfFileFake(self.FILENAME2,
                            variables={'var1': variable_plus_1})
     mydiffs = FileDiffs(file1, file2, separate_dim='dim2')
     num_differ = mydiffs.num_vars_differ()
     self.assertEqual(num_differ, 3)
Example #11
0
 def test_filesDiffer_withDifferentSlices(self):
     # Files with variables with different slices should also differ
     data1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
     data2 = np.array([[1, 2], [5, 6]])
     file1 = NetcdfFileFake(
         self.FILENAME1,
         variables={'var1': NetcdfVariableFake(data1, ('dim1', 'dim2'))})
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={'var1': NetcdfVariableFake(data2, ('dim1', 'dim2'))})
     mydiffs = FileDiffs(file1, file2, separate_dim='dim2')
     differ = mydiffs.files_differ()
     self.assertTrue(differ)
Example #12
0
 def test_numVarsDiffer_withVariableWithoutSeparateDim(self):
     # If we ask to separate on a given dimension, but a given variable
     # doesn't have that dimension, make sure this variable is just counted
     # once
     data = np.array([[1, 2, 3], [4, 5, 6]])
     data_plus_1 = data + 1
     variable = NetcdfVariableFake(data, ('dim1', 'dim2'))
     variable_plus_1 = NetcdfVariableFake(data_plus_1, ('dim1', 'dim2'))
     file1 = NetcdfFileFake(self.FILENAME1, variables={'var1': variable})
     file2 = NetcdfFileFake(self.FILENAME2,
                            variables={'var1': variable_plus_1})
     mydiffs = FileDiffs(file1, file2, separate_dim='dim_does_not_exist')
     num_differ = mydiffs.num_vars_differ()
     self.assertEqual(num_differ, 1)
Example #13
0
 def test_numCouldNotBeAnalyzed_withCharVariable(self):
     var_numeric = NetcdfVariableFake(np.array([1, 2, 3]))
     var_char = NetcdfVariableFake(np.array(['a', 'b', 'c']),
                                   is_numeric=False)
     file1 = NetcdfFileFake(self.FILENAME1,
                            variables={
                                'var1': var_numeric,
                                'var2': var_char
                            })
     file2 = NetcdfFileFake(self.FILENAME2,
                            variables={
                                'var1': var_numeric,
                                'var2': var_char
                            })
     mydiffs = FileDiffs(file1, file2, separate_dim=None)
     num_could_not_be_analyzed = mydiffs.num_could_not_be_analyzed()
     self.assertEqual(num_could_not_be_analyzed, 1)
Example #14
0
 def test_numNonsharedFields_separateDim_varHasDimInOne(self):
     # Doing diffs with a separate_dim, where a variable has the separate_dim
     # in one file but not in the other
     data = np.array([[1, 2, 3], [4, 5, 6]])
     file1 = NetcdfFileFake(
         self.FILENAME1,
         variables={'var1': NetcdfVariableFake(data, ('dim1', 'dim2'))})
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={'var1': NetcdfVariableFake(data, ('dim1', 'dim3'))})
     mydiffs = FileDiffs(file1, file2, separate_dim='dim2')
     num_nonshared = mydiffs.num_nonshared_fields()
     # Total number of nonshared fields is equal to (# in file1 not in file2)
     # + (# in file2 not in file1). In file1, we effectively have 3
     # variables, since var1 is separated along dim2; none of these are
     # present in file2, since var1 there has no dim2. In file2 we have 1
     # variable (var1 with no separate_dim), which is not found in file1.
     self.assertEqual(num_nonshared, 4)
Example #15
0
 def test_numNonsharedFields_noNonsharedFields(self):
     file1 = NetcdfFileFake(self.FILENAME1,
                            variables={
                                'var1':
                                NetcdfVariableFake(np.array([1, 2, 3])),
                                'var2':
                                NetcdfVariableFake(np.array([4, 5, 6]))
                            })
     file2 = NetcdfFileFake(self.FILENAME2,
                            variables={
                                'var1':
                                NetcdfVariableFake(np.array([1, 2, 3])),
                                'var2':
                                NetcdfVariableFake(np.array([4, 5, 6]))
                            })
     mydiffs = FileDiffs(file1, file1, separate_dim=None)
     num_nonshared = mydiffs.num_nonshared_fields()
     self.assertEqual(num_nonshared, 0)
Example #16
0
 def test_numNonsharedFields_separateDim_noNonsharedFields(self):
     data = np.array([[1, 2, 3], [4, 5, 6]])
     file1 = NetcdfFileFake(self.FILENAME1,
                            variables={
                                'var1':
                                NetcdfVariableFake(data, ('dim1', 'dim2')),
                                'var2':
                                NetcdfVariableFake(data, ('dim3', 'dim2'))
                            })
     file2 = NetcdfFileFake(self.FILENAME2,
                            variables={
                                'var1':
                                NetcdfVariableFake(data, ('dim1', 'dim2')),
                                'var2':
                                NetcdfVariableFake(data, ('dim3', 'dim2'))
                            })
     mydiffs = FileDiffs(file1, file2, separate_dim='dim2')
     num_nonshared = mydiffs.num_nonshared_fields()
     self.assertEqual(num_nonshared, 0)
Example #17
0
 def test_numVarsDiffer_with3Vars(self):
     file1 = NetcdfFileFake(self.FILENAME1,
                            variables={
                                'var1':
                                NetcdfVariableFake(np.array([1, 2, 3])),
                                'var2':
                                NetcdfVariableFake(np.array([4, 5, 6])),
                                'var3':
                                NetcdfVariableFake(np.array([7, 8, 9]))
                            })
     file2 = NetcdfFileFake(
         self.FILENAME2,
         variables={
             'var1': NetcdfVariableFake(np.array([99, 2, 3])),  # differs
             'var2': NetcdfVariableFake(np.array([4, 5, 6])),  # same
             'var3': NetcdfVariableFake(np.array([99, 8, 9]))
         })  # differs
     mydiffs = FileDiffs(file1, file2, separate_dim=None)
     num_differ = mydiffs.num_vars_differ()
     self.assertEqual(num_differ, 2)
Example #18
0
 def test_numNonsharedFields_withNonsharedFields(self):
     # Both files have var1; file1 has var2, whereas file2 has var3
     file1 = NetcdfFileFake(self.FILENAME1,
                            variables={
                                'var1':
                                NetcdfVariableFake(np.array([1, 2, 3])),
                                'var2':
                                NetcdfVariableFake(np.array([4, 5, 6]))
                            })
     file2 = NetcdfFileFake(self.FILENAME2,
                            variables={
                                'var1':
                                NetcdfVariableFake(np.array([1, 2, 3])),
                                'var3':
                                NetcdfVariableFake(np.array([4, 5, 6]))
                            })
     mydiffs = FileDiffs(file1, file2, separate_dim=None)
     num_nonshared = mydiffs.num_nonshared_fields()
     # Total number of nonshared fields is equal to (# in file1 not in file2)
     # + (# in file2 not in file1)
     self.assertEqual(num_nonshared, 2)
Example #19
0
 def test_filesDiffer_withNoVariables(self):
     file1 = NetcdfFileFake(self.FILENAME1, variables={})
     file2 = NetcdfFileFake(self.FILENAME2, variables={})
     mydiffs = FileDiffs(file1, file2)
     differ = mydiffs.files_differ()
     self.assertTrue(differ)
Example #20
0
 def create_filediffs_with0Vars(self):
     """Create a filediffs object where both files have 0 vars"""
     file1 = NetcdfFileFake(self.FILENAME1)
     file2 = NetcdfFileFake(self.FILENAME2)
     return FileDiffs(file1, file2, separate_dim=None)