Example #1
0
def main():
    random.seed(665243)
    np.random.seed(61734)
    np.set_printoptions(linewidth=100)

    parser = argparse.ArgumentParser(description="Create summaries from w2vec model.")
    parser.add_argument('--size', type=int, help="number of sentences to keep")
    args = parser.parse_args()

    data_dir = os.path.join("/users/mdenil/code/txtnets/txtnets_deployed/data", "stanfordmovie")


    with open("model_w2vec_logreg.pkl") as model_file:
        embedding_model = pickle.load(model_file)
        logistic_regression = pickle.load(model_file)


    with open(os.path.join(data_dir, "stanfordmovie.test.sentences.clean.projected.json")) as data_file:
        data = json.load(data_file)

    # random.shuffle(data)
    X, Y = map(list, zip(*data))
    Y = [[":)", ":("].index(y) for y in Y]

    objective = CrossEntropy()

    test_data_provider = LabelledDocumentMinibatchProvider(
        X=X,
        Y=Y,
        batch_size=1,
        padding=None,
        shuffle=False)

    prog_bar = pyprind.ProgBar(test_data_provider.batches_per_epoch)

    summaries = []

    for _ in range(test_data_provider.batches_per_epoch):
        x_batch, y_batch, meta_batch = test_data_provider.next_batch()
        label = [":)", ":("][int(y_batch[0,1])]

        sentence_importance_scores = get_sentence_importance_scores(
            embedding_model, logistic_regression, x_batch)

        most_important_sentence_indexes = np.argsort(sentence_importance_scores)
        most_important_sentence_indexes = most_important_sentence_indexes[:args.size]
        most_important_sentence_indexes.sort()

        summary = []
        for i in most_important_sentence_indexes:
            summary.append(x_batch[i])

        summaries.append([summary, label])

        prog_bar.update()


    with open("summaries_{}.json".format(args.size), 'w') as summaries_file:
        json.dump(summaries, summaries_file)
        summaries_file.write("\n")
def main():
    random.seed(665243)
    np.random.seed(61734)
    np.set_printoptions(linewidth=100)

    parser = argparse.ArgumentParser(description="Create summaries from w2vec model.")
    parser.add_argument("--size", type=int, help="number of sentences to keep")
    args = parser.parse_args()

    data_dir = os.path.join("/users/mdenil/code/txtnets/txtnets_deployed/data", "stanfordmovie")

    with open("model_w2vec_logreg.pkl") as model_file:
        embedding_model = pickle.load(model_file)
        logistic_regression = pickle.load(model_file)

    with open(os.path.join(data_dir, "stanfordmovie.test.sentences.clean.projected.json")) as data_file:
        data = json.load(data_file)

    # random.shuffle(data)
    X, Y = map(list, zip(*data))
    Y = [[":)", ":("].index(y) for y in Y]

    objective = CrossEntropy()

    test_data_provider = LabelledDocumentMinibatchProvider(X=X, Y=Y, batch_size=1, padding=None, shuffle=False)

    prog_bar = pyprind.ProgBar(test_data_provider.batches_per_epoch)

    summaries = []

    for _ in range(test_data_provider.batches_per_epoch):
        x_batch, y_batch, meta_batch = test_data_provider.next_batch()
        label = [":)", ":("][int(y_batch[0, 1])]

        sentence_importance_scores = get_sentence_importance_scores(embedding_model, logistic_regression, x_batch)

        most_important_sentence_indexes = np.argsort(sentence_importance_scores)
        most_important_sentence_indexes = most_important_sentence_indexes[: args.size]
        most_important_sentence_indexes.sort()

        summary = []
        for i in most_important_sentence_indexes:
            summary.append(x_batch[i])

        summaries.append([summary, label])

        prog_bar.update()

    with open("summaries_{}.json".format(args.size), "w") as summaries_file:
        json.dump(summaries, summaries_file)
        summaries_file.write("\n")
    batch_size = 25

    train_data_provider = LabelledDocumentMinibatchProvider(
        X=X[:-n_validation],
        Y=Y[:-n_validation],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences=15,
        fixed_n_words=50)

    print train_data_provider.batches_per_epoch

    validation_data_provider = LabelledDocumentMinibatchProvider(
        X=X[-n_validation:],
        Y=Y[-n_validation:],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences=15,
        fixed_n_words=50)


    model = CSM(
        layers=[
            DictionaryEncoding(vocabulary=encoding),

            WordEmbedding(
                dimension=20,
                vocabulary_size=len(encoding),
                padding=encoding['PADDING']),

            Dropout(('b', 'w', 'f'), 0.2),
Example #4
0
def run():

    with open("{{train_data_json}}") as data_file:
        data = json.load(data_file)
        random.shuffle(data)
        X, Y = map(list, zip(*data))
        Y = [[":)", ":("].index(y) for y in Y]

    with open("{{train_encoding_json}}") as encoding_file:
        encoding = json.load(encoding_file)

    n_validation = {{n_validation}}
    batch_size = {{batch_size}}

    train_data_provider = LabelledDocumentMinibatchProvider(
        X=X[:-n_validation],
        Y=Y[:-n_validation],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences={{fixed_n_sentences}},
        fixed_n_words={{fixed_n_words}})

    print train_data_provider.batches_per_epoch

    validation_data_provider = LabelledDocumentMinibatchProvider(
        X=X[-n_validation:],
        Y=Y[-n_validation:],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences={{fixed_n_sentences}},
        fixed_n_words={{fixed_n_words}})

    model = experiment_config.get_model(encoding)

    print model

    cost_function = CrossEntropy()

    regularizer = L2Regularizer(lamb={{regularizer}})

    objective = CostMinimizationObjective(cost=cost_function,
                                          data_provider=train_data_provider,
                                          regularizer=regularizer)

    update_rule = AdaGrad(gamma={{adagrad_gamma}}, model_template=model)

    optimizer = SGD(model=model, objective=objective, update_rule=update_rule)

    n_epochs = {{n_epochs}}
    n_batches = train_data_provider.batches_per_epoch * n_epochs

    time_start = time.time()

    best_acc = -1.0

    progress = []

    for batch_index, iteration_info in enumerate(optimizer):
        if batch_index % {{validation_frequency}} == 0:

            model_nodropout = cpu.model.dropout.remove_dropout(model)
            Y_hat = []
            Y_valid = []
            for _ in xrange(validation_data_provider.batches_per_epoch):
                X_valid_batch, Y_valid_batch, meta_valid = validation_data_provider.next_batch(
                )
                X_valid_batch = X_valid_batch
                Y_valid_batch = Y_valid_batch
                Y_valid.append(Y_valid_batch)
                Y_hat.append(
                    model_nodropout.fprop(X_valid_batch, meta=meta_valid))
            Y_valid = np.concatenate(Y_valid, axis=0)
            Y_hat = np.concatenate(Y_hat, axis=0)
            assert np.all(np.abs(Y_hat.sum(axis=1) - 1) < 1e-6)

            acc = np.mean(
                np.argmax(Y_hat, axis=1) == np.argmax(Y_valid, axis=1))

            if acc > best_acc:
                best_acc = acc
                with open(os.path.join("{{job_dir}}", "model_best.pkl"),
                          'w') as model_file:
                    pickle.dump(model, model_file, protocol=-1)

            if batch_index % {{save_frequency}} == 0:
                with open(
                        os.path.join("{{job_dir}}",
                                     "model_{:05}.pkl".format(batch_index)),
                        'w') as model_file:
                    pickle.dump(model, model_file, protocol=-1)

            print "B: {}, A: {}, C: {}, Prop1: {}, Param size: {}, best: {}".format(
                batch_index, acc, iteration_info['cost'],
                np.argmax(Y_hat, axis=1).mean(), np.mean(np.abs(model.pack())),
                best_acc)

            time_now = time.time()

            examples_per_hr = (batch_index * batch_size) / (time_now -
                                                            time_start) * 3600

            progress.append({
                'batch': batch_index,
                'validation_accuracy': acc,
                'best_validation_accuracy': best_acc,
                'cost': iteration_info['cost'],
                'examples_per_hr': examples_per_hr,
            })

            with open(os.path.join("{{job_dir}}", "progress.pkl"),
                      'w') as progress_file:
                pickle.dump(progress, progress_file, protocol=-1)

        if batch_index >= n_batches:
            break

    time_end = time.time()

    print "Time elapsed: {}s".format(time_end - time_start)
Example #5
0
def run():

    with open("{{train_data_json}}") as data_file:
        data = json.load(data_file)
        random.shuffle(data)
        X, Y = map(list, zip(*data))
        Y = [[":)", ":("].index(y) for y in Y]

    with open("{{train_encoding_json}}") as encoding_file:
        encoding = json.load(encoding_file)

    n_validation = {{n_validation}}
    batch_size = {{batch_size}}

    train_data_provider = LabelledDocumentMinibatchProvider(
        X=X[:-n_validation],
        Y=Y[:-n_validation],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences={{fixed_n_sentences}},
        fixed_n_words={{fixed_n_words}})

    print train_data_provider.batches_per_epoch

    validation_data_provider = LabelledDocumentMinibatchProvider(
        X=X[-n_validation:],
        Y=Y[-n_validation:],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences={{fixed_n_sentences}},
        fixed_n_words={{fixed_n_words}})

    model = experiment_config.get_model(encoding)

    print model

    cost_function = CrossEntropy()

    regularizer = L2Regularizer(lamb={{regularizer}})

    objective = CostMinimizationObjective(
        cost=cost_function,
        data_provider=train_data_provider,
        regularizer=regularizer)

    update_rule = AdaGrad(
        gamma={{adagrad_gamma}},
        model_template=model)

    optimizer = SGD(
        model=model,
        objective=objective,
        update_rule=update_rule)

    n_epochs = {{n_epochs}}
    n_batches = train_data_provider.batches_per_epoch * n_epochs

    time_start = time.time()

    best_acc = -1.0

    progress = []

    for batch_index, iteration_info in enumerate(optimizer):
        if batch_index % {{validation_frequency}} == 0:

            model_nodropout = cpu.model.dropout.remove_dropout(model)
            Y_hat = []
            Y_valid = []
            for _ in xrange(validation_data_provider.batches_per_epoch):
                X_valid_batch, Y_valid_batch, meta_valid = validation_data_provider.next_batch()
                X_valid_batch = X_valid_batch
                Y_valid_batch = Y_valid_batch
                Y_valid.append(Y_valid_batch)
                Y_hat.append(model_nodropout.fprop(X_valid_batch, meta=meta_valid))
            Y_valid = np.concatenate(Y_valid, axis=0)
            Y_hat = np.concatenate(Y_hat, axis=0)
            assert np.all(np.abs(Y_hat.sum(axis=1) - 1) < 1e-6)

            acc = np.mean(np.argmax(Y_hat, axis=1) == np.argmax(Y_valid, axis=1))

            if acc > best_acc:
                best_acc = acc
                with open(os.path.join("{{job_dir}}", "model_best.pkl"), 'w') as model_file:
                    pickle.dump(model, model_file, protocol=-1)

            if batch_index % {{save_frequency}} == 0:
                with open(os.path.join("{{job_dir}}", "model_{:05}.pkl".format(batch_index)), 'w') as model_file:
                    pickle.dump(model, model_file, protocol=-1)

            print "B: {}, A: {}, C: {}, Prop1: {}, Param size: {}, best: {}".format(
                batch_index,
                acc,
                iteration_info['cost'],
                np.argmax(Y_hat, axis=1).mean(),
                np.mean(np.abs(model.pack())),
                best_acc)

            time_now = time.time()

            examples_per_hr = (batch_index * batch_size) / (time_now - time_start) * 3600

            progress.append({
                'batch': batch_index,
                'validation_accuracy': acc,
                'best_validation_accuracy': best_acc,
                'cost': iteration_info['cost'],
                'examples_per_hr': examples_per_hr,
            })

            with open(os.path.join("{{job_dir}}", "progress.pkl"), 'w') as progress_file:
                pickle.dump(progress, progress_file, protocol=-1)

        if batch_index >= n_batches:
            break

    time_end = time.time()

    print "Time elapsed: {}s".format(time_end - time_start)
    with open(
            os.path.join(
                data_dir,
                "stanfordmovie.train.sentences.clean.dictionary.encoding.json")
    ) as encoding_file:
        encoding = json.load(encoding_file)

    print len(encoding)

    n_validation = 500
    batch_size = 25

    train_data_provider = LabelledDocumentMinibatchProvider(
        X=X[:-n_validation],
        Y=Y[:-n_validation],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences=15,
        fixed_n_words=50)

    print train_data_provider.batches_per_epoch

    validation_data_provider = LabelledDocumentMinibatchProvider(
        X=X[-n_validation:],
        Y=Y[-n_validation:],
        batch_size=batch_size,
        padding='PADDING',
        fixed_n_sentences=15,
        fixed_n_words=50)

    model = CSM(layers=[