Example #1
0
def portrayal_thread(user, task_id):
    tweet_list = tweets_crawler.get_user_all_timeline_return(
        screen_name=user['screen_name'])
    user['tweets'] = tweet_list

    out = user_profile.user_profile(user)

    db = MongoDB().connect()
    collect = db['typical']

    cur_user = collect.find_one({'_id': long(out['user_id'])})

    out['_id'] = long(out['user_id'])
    del out['user_id']

    if cur_user == None:
        collect.insert_one(out)

        th = threading.Thread(target=relation_thread, args=(out, ))
        th.start()
    else:
        collect.delete_one({'_id': long(out['_id'])})
        collect.insert_one(out)

    with app.app_context():
        TypicalCharacter.query.filter(TypicalCharacter.id == task_id).update({
            'finished_at':
            time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
        })
Example #2
0
def classify_career():
	db = MongoDB().connect()
	users = db['typical'].find()

	n = 0
	err_dict = {}
	for user in users:
		tweets = user['tweets']
		text = user['description']
		for tweet in tweets:
			text += ' ' + tweet['text']
		
		text = preprocess.preprocess(text)
		res = classify.exe_classify(text)
			
		if err_dict.has_key(res[0]):
			err_dict[res[0]] += 1
		else:
			err_dict[res[0]] = 1

		if res[0] == user['category']:
			n += 1

	print err_dict
	print n
Example #3
0
def task_detail(task_id):
    task = Task.query.filter(Task.id == task_id).first()
    user = Admin.query.filter(Admin.userid == task.userid).first()

    res = {
        'id': task.id,
        'task_name': task.task_name,
        'user_name': user.username,
        'created_at': task.created_at,
        'finished_at': task.finished_at,
        'screen_name': task.search_name,
        'remark': task.remark,
        'thread_num': task.thread_num,
        'deepth': task.deepth,
        'extension': str(task.extension),
        'tweet_num': task.tweet_num,
        'basicinfo_num': task.basicinfo_num,
        'type': 'File Upload' if task.is_file else 'Breadth First Extension',
        'search_type': task.search_type,
        'file_content': task.file_content,
        'basicinfo_num_finished': '',
        'tweet_num_finished': ''
    }

    if '4' in task.search_type:
        sql = "select count(*) from task_%s" % task.id
        bsc = db.session.execute(sql).first()
        res['basicinfo_num_finished'] = bsc[0]

    if '1' in task.search_type or task.search_type == '':
        md = MongoDB().connect()
        collect = md["task_%s" % task.id]
        res['tweet_num_finished'] = collect.find().count()

    return render_template('task_detail.html', task=res)
Example #4
0
def modify_category():
    user_id = request.form['user_id']
    category = request.form['category']

    categories = [
        "Entertainment", "Agriculture", "Sports", "Religion", "Military",
        "Politics", "Education", "Technology", "Economy"
    ]

    if not user_id or category not in categories:
        return jsonify({'status': 0})

    db = MongoDB().connect()
    collect = db['typical']

    collect.update_one({'_id': long(user_id)},
                       {"$set": {
                           "category": category
                       }})

    node = selector.select("Typical", user_id=long(user_id)).first()

    node['category'] = category
    graph.push(node)

    return jsonify({'status': 1})
def test_insert():
    db = MongoDB('test')
    doc = 'test'
    data = {'test': 123}
    r = db.insert(doc, data=data)
    assert r
    assert isinstance(r, ObjectId)
    c = db.query(doc) \
        .find_one({'_id': r})
    assert c['test'] == 123
Example #6
0
def calc_sentiment_score():
	sentiment_dict = dict(map(lambda (k,v): (k,int(v)),
						[ line.split('\t') for line in open("portrayal/sentiment_classify/data/sentiment_words1.txt") ]))

	db = MongoDB().connect()
	users = db['typical'].find({'screen_name': 'EP_Agriculture'}).limit(1)

	for user in users:
		final_sentiment, psy_with_time1, psy_with_time2, psy_with_count1, psy_with_count2 = sentiment_classify.exe_sentiment_classify(user['tweets'])
		# print tags
		db['typical'].update({'_id': user['_id']}, {"$set": {"psy": final_sentiment, "psy_with_time1": psy_with_time1, "psy_with_time2": psy_with_time2, "psy_with_count1": psy_with_count1, "psy_with_count2": psy_with_count2}}) 
def test_update():
    db = MongoDB('test')
    doc = 'test'
    data = {'test': 123}
    db.insert(doc, data=data)
    c = db.query(doc) \
        .find_one({'test': 123})
    r = db.update(doc, c=c, data={'test': 999})
    assert r['ok'] == True
    c2 = db.query(doc) \
        .find_one({'_id': c['_id']})
    assert c2['test'] == 999
Example #8
0
def calc_sentiment():
	db = MongoDB().connect()
	users = db['typical'].find()

	for user in users:
		try:
			final_sentiment, psy_with_time1, psy_with_time2, psy_with_count1, psy_with_count2 = sentiment_classify.exe_sentiment_classify(user['tweets'])
		except Exception as e:
			print user['_id']
			print e
			continue

		db['typical'].update({'_id': user['_id']}, {"$set": {"psy": final_sentiment, "psy_with_time1": psy_with_time1, "psy_with_time2": psy_with_time2, "psy_with_count1": psy_with_count1, "psy_with_count2": psy_with_count2}}) 
Example #9
0
def download_user_xml(user_id):
    db = MongoDB().connect()
    collect = db['typical']

    user = collect.find_one({'_id': long(user_id)})
    file_name = generate_user_xml(user)

    response = make_response(send_file(file_name))
    response.headers[
        "Content-Disposition"] = "attachment; filename=%s.xml" % user[
            'screen_name']

    return response
Example #10
0
def update_attr():
    graph = Neo4j().connect()
    mongo = MongoDB().connect()

    tus = mongo['typical'].find({}, {
        'name': 1,
        'category': 1,
        'followers_count': 1,
        'location': 1,
        'utc_offset': 1,
        'statuses_count': 1,
        'description': 1,
        'friends_count': 1,
        'psy': 1,
        'verified': 1,
        'lang': 1,
        'favourites_count': 1,
        'screen_name': 1,
        'influence_score': 1,
        'created_at': 1,
        'time_zone': 1,
        'protected': 1,
        'activity': 1
    })

    for item in tus:
        node = graph.find_one("Typical",
                              property_key="user_id",
                              property_value=item['_id'])
        node['name'] = item['name']
        node['category'] = item['category']
        node['followers_count'] = item['followers_count']
        node['location'] = item['location']
        node['utc_offset'] = item['utc_offset']
        node['statuses_count'] = item['statuses_count']
        node['description'] = item['description']
        node['friends_count'] = item['friends_count']
        node['psy'] = item['psy']
        node['verified'] = item['verified']
        node['lang'] = item['lang']
        node['favourites_count'] = item['favourites_count']
        node['screen_name'] = item['screen_name']
        node['influence_score'] = item['influence_score']
        node['created_at'] = item['created_at']
        node['time_zone'] = item['time_zone']
        node['protected'] = item['protected']
        node['activity'] = item['activity']

        graph.push(node)
Example #11
0
def extract_interset():
	db = MongoDB().connect()
	users = db['typical'].find()
	
	for u in users:
		text = ''
		for item in u['tweets']:
			text += item['text'] + ' '

		try:
			tags = interest_extract.extract_tags(text, u['description'])
		except Exception as e:
			print u['_id']
			print e
			continue
	
		db['typical'].update({'_id': u['_id']}, {"$set": {"interest_tags": tags}})
Example #12
0
def download_interest_tags(user_id):
    db = MongoDB().connect()
    collect = db['typical']

    user = collect.find_one({'_id': long(user_id)}, {
        'interest_tags': 1,
        'screen_name': 1
    })

    file_name = tag_cloud.generate_tag_cloud(user['interest_tags'],
                                             user['_id'])

    response = make_response(send_file(file_name))
    response.headers[
        "Content-Disposition"] = "attachment; filename=%s_interest_tags.png" % user[
            'screen_name']

    return response
Example #13
0
def typical_character_newdelete():
    user_id = request.form['user_id']

    if not user_id:
        return jsonify({'status': 0})

    TypicalCharacter.query.filter(TypicalCharacter.user_id == user_id).delete()

    db = MongoDB().connect()
    collect = db['typical']

    collect.delete_one({'_id': long(user_id)})

    collect = db['relation']
    collect.delete_one({'_id': long(user_id)})

    cql = '''MATCH (a:Typical{user_id:%d})-[r:following]-(b) DETACH delete a, r''' % long(
        user_id)
    graph.run(cql)

    return jsonify({'status': 1})
Example #14
0
def typical_data_statistics():
    db = MongoDB().connect()
    collect = db['typical']

    users = collect.find({}, {'category': 1, '_id': 0, 'influence_score': 1})

    category = {
        'Politics': 0,
        'Religion': 0,
        'Military': 0,
        'Economy': 0,
        'Technology': 0,
        'Education': 0,
        'Agriculture': 0,
        'Entertainment': 0,
        'Sports': 0
    }

    influence = {}

    for i in range(15):
        influence[str(i * 10)] = 0

    for item in users:
        category[item['category']] += 1

        s = str(int(item['influence_score'] / 10) * 10)

        if int(s) >= 150:
            if not influence.has_key(s):
                influence[s] = 1
            else:
                influence[s] += 1

        else:
            influence[s] += 1

    return render_template('portrayal/typical_data_statistics.html',
                           category=category,
                           influence=influence)
Example #15
0
def create_relation():
    graph = Neo4j().connect()
    mongo = MongoDB().connect()

    # 清空neo4j数据库
    # graph = graph.delete_all()

    tus = mongo['typical'].find({}, {'_id': 1})

    for item in tus:
        # 创建用户节点
        user = Node("Typical", user_id=item['_id'])
        graph.create(user)

    tus = mongo['relation'].find({}, {'_id': 1})
    user_list = map(lambda item: item['_id'], tus)

    # 创建用户节点之间的关系
    for user_id in user_list:
        friends = mongo['relation'].find_one({'_id': user_id})
        friends = set(friends['friends'])

        node1 = graph.find_one("Typical",
                               property_key="user_id",
                               property_value=user_id)

        for user_id1 in user_list:
            if user_id1 == user_id:
                continue

            if user_id1 in friends:
                node2 = graph.find_one("Typical",
                                       property_key="user_id",
                                       property_value=user_id1)

                following = Relationship(node1, 'following', node2)
                graph.create(following)
def test_query():
    db = MongoDB('test')
    doc = 'test'
    r = db.query(doc)
    assert r
    assert r == db.collection[doc]
Example #17
0
def update_user_category():
	db = MongoDB().connect()
	users = db['typical'].find({}, {'_id': 1, 'screen_name': 1, 'category': 1, 'category_score': 1})

	count = 0
	category_name = ['Politics', 'Religion', 'Military', 'Economy', 'Technology', 'Education', 'Agriculture', 'Entertainment', 'Sports']

	users_temp = []

	for item in users:
		sorted_list = sorted(item['category_score'].iteritems(), key = lambda asd:asd[1], reverse = True)

		if sorted_list[0][1] > 2 * sorted_list[1][1] or sorted_list[0][1] - sorted_list[1][1] > 50:
			if sorted_list[0][0] != item['category']:
				count += 1
			continue

		score_differ = (2 * sorted_list[0][1] - sorted_list[1][1] - sorted_list[-1][1]) / 2

		relation_dict = {
			sorted_list[0][0]: 0,
			sorted_list[1][0]: 0,
			sorted_list[2][0]: 0,
			sorted_list[3][0]: 0
		}
		# for name in category_name:
		# 	relation_dict[name] = 0

		cql = '''MATCH(a{user_id:%s})-[:following]->(f) return distinct f.user_id as user_id''' % (item['_id'])
		res = graph.data(cql)

		for f in res:
			user = db['typical'].find_one({'_id': f['user_id']}, {'category_score': 1})
			category_score = user['category_score']
			max_category = max(category_score, key = lambda x: category_score[x])
			
			if max_category in relation_dict:
				relation_dict[max_category] += 1

		cql = '''MATCH(a{user_id:%s})<-[:following]-(f) return distinct f.user_id as user_id''' % (item['_id'])
		res = graph.data(cql)

		for f in res:
			user = db['typical'].find_one({'_id': f['user_id']}, {'category_score': 1})
			category_score = user['category_score']
			max_category = max(category_score, key = lambda x: category_score[x])

			if max_category in relation_dict:
				relation_dict[max_category] += 1
		
		relation_total = 0

		for ri in relation_dict:
			relation_total += relation_dict[ri]

		if relation_total < 10:
			if sorted_list[0][0] != item['category']:
				count += 1
			continue

		for ri in relation_dict:
			item['category_score'][ri] += round(score_differ * relation_dict[ri] / relation_total, 2)
		
		users_temp.append({'_id':item['_id'], "category_score": item['category_score']})

		s1 = sorted_list[0][0]

		sorted_list = sorted(item['category_score'].iteritems(), key = lambda asd:asd[1], reverse = True)

		# if sorted_list[0][0] == item['category'] and s1 != item['category']:
		# 	print item['screen_name']

		if sorted_list[0][0] != item['category']:
			count += 1
		
		print count
	
	for item in users_temp:
		db['typical'].update({'_id': item['_id']}, {"$set": {"category_score": item['category_score']}}) 
Example #18
0
	# 		print user['screen_name']
	# 	# break
	# print count
	# 	for tt in user['tweets']:
	# 		print tt['text']
	# extract_interset()
	# calc_sentiment()
	# calc_sentiment_score()
	# sentiment_dict_test()

	# try:
	# 	words = word_tokenize("What a beautiful sunday . happy")
	# 	print nltk.pos_tag(words)
	# except Exception as e:
	# 	print e
	db = MongoDB().connect()
	users = db['typical'].find()

	count = 1
	data_set = {
		'retweet_favorite_rate': [],
		'fans_retweet_rate': [],
		'fans_favorite_rate': []
	}
	for user in users:
		tweets = user['tweets']
		fans = user['followers_count']

		# if fans > 2000000:
		# 	continue
		count += 1
Example #19
0
def typical_category_statistics():
    db = MongoDB().connect()
    collect = db['typical']

    total_count = collect.find({}, {}).count()

    users = collect.find({}, {'category': 1, '_id': 0, 'category_score': 1})

    category_name = [
        'Politics', 'Religion', 'Military', 'Economy', 'Technology',
        'Education', 'Agriculture', 'Entertainment', 'Sports'
    ]
    category = {}

    for item in category_name:
        category[item] = {
            'count': 0,
            'error_count': 0,
            'sub_error_count': 0,
            'error_classified_count': 0,
            'error_distribution': {}
        }

        for name in category_name:
            category[item]['error_distribution'][name] = 0

    for item in category:
        del category[item]['error_distribution'][item]

    error_count = 0
    sub_error_count = 0

    for item in users:
        category[item['category']]['count'] += 1
        category_score = item['category_score']
        max_category = max(category_score, key=category_score.get)

        if max_category != item['category']:
            category[item['category']]['error_distribution'][max_category] += 1
            category[max_category]['error_classified_count'] += 1

            error_count += 1
            category[item['category']]['error_count'] += 1

            category_score[max_category] = 0
            max_category = max(category_score, key=category_score.get)

            if max_category != item['category']:
                sub_error_count += 1
                category[item['category']]['sub_error_count'] += 1

    for item in category:
        correct_count = category[item]['count'] - category[item]['error_count']
        category[item]['correct_count'] = correct_count
        category[item]['recall'] = round(
            correct_count * 1.0 / category[item]['count'], 4)
        category[item]['precision'] = round(
            correct_count * 1.0 /
            (correct_count + category[item]['error_classified_count']), 4)
        category[item]['f_score'] = round(
            2 * category[item]['recall'] * category[item]['precision'] /
            (category[item]['recall'] + category[item]['precision']), 4)
        category[item]['accuracy'] = round(
            (correct_count + total_count - category[item]['count'] -
             category[item]['error_classified_count']) * 1.0 / total_count, 4)
        category[item]['easy_wrong_category'] = max(
            category[item]['error_distribution'],
            key=category[item]['error_distribution'].get)

    average_recall = 0
    average_precision = 0
    average_fscore = 0
    average_accuracy = 0

    for item in category:
        average_recall += category[item]['recall'] * category[item][
            'count'] / total_count
        average_precision += category[item]['precision'] * category[item][
            'count'] / total_count
        average_fscore += category[item]['f_score'] * category[item][
            'count'] / total_count
        average_accuracy += category[item]['accuracy'] * category[item][
            'count'] / total_count


    return render_template('portrayal/typical_category_statistics.html', category = category, total_count = total_count, error_count = error_count, \
    average_accuracy = round(average_accuracy, 4), sub_error_count = sub_error_count, average_recall = round(average_recall, 4), average_precision = round(average_precision, 4), average_fscore = round(average_fscore, 4))
Example #20
0
def relation_thread(user):
    user_id = user['_id']

    db = MongoDB().connect()
    collect = db['relation']

    user_id = long(user_id)
    typical_user = collect.find_one({'_id': user_id})

    if typical_user:
        return

    user_node = Node("Typical",
                     user_id=user_id,
                     name=user['name'],
                     category=user['category'],
                     followers_count=user['followers_count'],
                     location=user['location'],
                     utc_offset=user['utc_offset'],
                     statuses_count=user['statuses_count'],
                     description=user['description'],
                     friends_count=user['friends_count'],
                     psy=user['psy'],
                     verified=user['verified'],
                     lang=user['lang'],
                     favourites_count=user['favourites_count'],
                     screen_name=user['screen_name'],
                     influence_score=user['influence_score'],
                     created_at=user['created_at'],
                     time_zone=user['time_zone'],
                     protected=user['protected'],
                     activity=user['activity'])

    graph.create(user_node)

    cursor = -1
    friends = []

    while cursor != 0:
        out = relation_crawler.get_friendids_paged_sleep(user_id=user_id,
                                                         cursor=cursor,
                                                         count=5000)
        if not out:
            break

        friends = friends + out[2]
        cursor = out[0]

    collect.insert_one({'_id': user_id, 'friends': friends})

    tus = collect.find()
    friends = set(friends)

    for item in tus:
        if item['_id'] == user_id:
            continue

        friend_node = selector.select("Typical", user_id=item['_id']).first()

        # friend_node1 = graph.find_one("Typical",
        # 							 property_key = "user_id",
        # 							 property_value = item['_id'])

        if item['_id'] in friends:
            following = Relationship(user_node, 'following', friend_node)
            graph.create(following)

        if user_id in set(item['friends']):
            following = Relationship(friend_node, 'following', user_node)
            graph.create(following)

    sorted_list = sorted(user['category_score'].iteritems(),
                         key=lambda asd: asd[1],
                         reverse=True)

    if sorted_list[0][1] > 2 * sorted_list[1][1] or sorted_list[0][
            1] - sorted_list[1][1] > 50:
        return

    score_differ = (2 * sorted_list[0][1] - sorted_list[1][1] -
                    sorted_list[-1][1]) / 2

    category_name = [
        'Politics', 'Religion', 'Military', 'Economy', 'Technology',
        'Education', 'Agriculture', 'Entertainment', 'Sports'
    ]

    relation_dict = {}
    for name in category_name:
        relation_dict[name] = 0

    cql = '''MATCH(a{user_id:%s})-[:following]->(f) return distinct f.user_id as user_id, f.category as category''' % (
        user['_id'])
    res = graph.data(cql)

    for f in res:
        relation_dict[f['category']] += 1

    cql = '''MATCH(a{user_id:%s})<-[:following]-(f) return distinct f.user_id as user_id, f.category as category''' % (
        user['_id'])
    res = graph.data(cql)

    for f in res:
        relation_dict[f['category']] += 1

    relation_total = 0

    for ri in relation_dict:
        relation_total += relation_dict[ri]

    if relation_total < 10:
        return

    for ri in relation_dict:
        user['category_score'][ri] += round(
            score_differ * relation_dict[ri] / relation_total, 2)

    category_score = user['category_score']
    max_category = max(category_score, key=lambda x: category_score[x])

    db['typical'].update(
        {'_id': user['_id']},
        {"$set": {
            "category_score": category_score,
            "category": max_category
        }})

    node = selector.select("Typical", user_id=long(user['_id'])).first()
    node['category'] = max_category
    graph.push(node)
Example #21
0
def typical_character_list_detail():
    data = json.loads(request.form['aoData'])

    for item in data:
        if item['name'] == 'sSearch':
            s_search = item['value'].strip()

        if item['name'] == 'iDisplayLength':
            data_length = item['value']

        if item['name'] == 'iDisplayStart':
            data_start = item['value']

    data_length = int(data_length)

    db = MongoDB().connect()
    collect = db['typical']

    field = {
        'screen_name': 1,
        'name': 1,
        'friends_count': 1,
        'followers_count': 1,
        'statuses_count': 1,
        'influence_score': 1,
        'category': 1
    }

    if s_search == '':
        users = collect.find({}, field).skip(data_start).limit(data_length)
        count = collect.find({}, {'_id': 1}).count()
    else:
        pattern = re.compile(".*" + s_search + ".*")
        query = {
            "$or": [{
                "name": pattern
            }, {
                "category": pattern
            }, {
                "interest_tags": pattern
            }, {
                "screen_name": pattern
            }, {
                "description": pattern
            }, {
                "location": pattern
            }, {
                "name": pattern
            }]
        }

        users = collect.find(query, field).skip(data_start).limit(data_length)
        count = collect.find(query, {'_id': 1}).count()

    res = []
    for u in users:
        res.append({
            "_id": str(u['_id']),
            "screen_name": u['screen_name'],
            "name": u['name'],
            "friends_count": u['friends_count'],
            "followers_count": u['followers_count'],
            "statuses_count": u['statuses_count'],
            "category": u['category'],
            "influence_score": round(u['influence_score'], 3)
        })

    return jsonify({'aaData': res, 'iTotalDisplayRecords': count})
Example #22
0
def typical_character_detail(user_id):
    mdb = MongoDB().connect()
    collect = mdb['typical']

    user = collect.find_one({'_id': long(user_id)}, {'tweets': 0})

    user['ratio'] = user[
        'followers_count'] if not user['friends_count'] else round(
            user['followers_count'] * 1.0 / user['friends_count'], 2)
    user['created_at'] = time.strftime(
        '%Y-%m-%d %H:%M:%S',
        time.strptime(user['created_at'].replace('+0000 ', '')))
    user['crawler_date'] = str(user['crawler_date']).split(" ")[0]
    user['interest_tags'] = user['interest_tags'].replace(',', ', ')
    user['interest_tags'] = re.sub(
        r'#(\w+)',
        "<a href='https://www.twitter.com/hashtag/\g<1>' target='_blank'>#\g<1></a>",
        user['interest_tags'])

    s = ''
    for item in user['activity_list']:
        s += "," + str(item)
    user['activity_list'] = s[1:]

    s = ''
    for item in user['psy_with_time1']:
        s += "," + str(item)
    user['psy_with_time1'] = s[1:]

    s = ''
    for item in user['psy_with_time2']:
        s += "," + str(item)
    user['psy_with_time2'] = s[1:]

    s = ''
    for item in user['psy_with_count1']:
        s += "," + str(item)
    user['psy_with_count1'] = s[1:]

    s = ''
    for item in user['psy_with_count2']:
        s += "," + str(item)
    user['psy_with_count2'] = s[1:]

    s = ''
    s1 = ''
    for item in user['category_score']:
        s += "," + item
        s1 += "," + str(user['category_score'][item])

    user['category_score_keys'] = s[1:]
    user['category_score_values'] = s1[1:]

    user_tweets = collect.aggregate([{"$match": {'_id': long(user_id)}}, \
     {"$project": {"length": {"$size": "$tweets"}, "first": {"$slice": ["$tweets.created_at", 0, 1]},\
     "last": {"$slice": ["$tweets.created_at", -1]}}}])

    for item in user_tweets:
        user['tweets_count'] = item['length']
        user['tweets_start_time'] = time.strftime(
            '%Y-%m-%d %H:%M:%S',
            time.strptime(item['first'][0].replace('+0000 ', '')))
        user['tweets_end_time'] = time.strftime(
            '%Y-%m-%d %H:%M:%S',
            time.strptime(item['last'][0].replace('+0000 ', '')))

        break

    get_image(user['profile_image_url'], user['screen_name'])

    related_users = collect.find(
        {
            'category': user['category'],
            '_id': {
                "$ne": user['_id']
            }
        }, {
            'screen_name': 1,
            'name': 1,
            'profile_image_url': 1
        }).limit(10)

    ru_arr = []
    for ru in related_users:
        ru_arr.append({
            '_id': str(ru['_id']),
            'screen_name': ru['screen_name'],
            'name': ru['name']
        })
        get_image(ru['profile_image_url'], ru['screen_name'])

    return render_template('portrayal/typical_character_detail.html',
                           user=user,
                           related_users=ru_arr)