import matplotlib.pyplot as plt import scipy.optimize as optimize from solveq2d import solveq2d num_fig = 1000 SAVE_FIG = 1 name_file = 'fig_time_mean_forcingw_f_c.eps' create_fig = CreateFigArticles( short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=19 ) def load_from_namedir(set_of_dir, name_dir_results, tstatio): path_dir_results = set_of_dir.path_dirs[name_dir_results] sim = solveq2d.create_sim_plot_from_dir(path_dir_results) (dico_time_means, dico_results ) = sim.output.spatial_means.compute_time_means(tstatio) c2 = sim.param['c2'] EK = dico_time_means['EK'] Fr = np.sqrt(2*EK/c2) EA = dico_time_means['EA']
import matplotlib.pylab as plt import glob import numpy as np from solveq2d import solveq2d from create_figs_articles import CreateFigArticles SAVE_FIG = False create_fig = CreateFigArticles( short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=19) dir_base = create_fig.path_base_dir+'/Results_SW1lw' c = 40 resol = 240*2**5 str_resol = repr(resol) str_to_find_path = ( dir_base+'/Pure_standing_waves_'+ str_resol+'*/SE2D*c='+repr(c))+'_*' print(str_to_find_path)
import glob from solveq2d import solveq2d from create_figs_articles import CreateFigArticles num_fig = 1000 SAVE_FIG = 0 c = 40 resol = 240 * 2**5 name_file = ('fig_nothin_c={0}_nh={1}'.format(c, resol)) create_fig = CreateFigArticles(short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=19) dir_base = create_fig.path_base_dir + '/Results_SW1lw' str_resol = repr(resol) str_to_find_path = (dir_base + '/Pure_standing_waves_' + str_resol + '*/SE2D*c=' + repr(c)) + '_*' print str_to_find_path paths_dir = glob.glob(str_to_find_path) print paths_dir sim = solveq2d.create_sim_plot_from_dir(paths_dir[0])
import numpy as np import matplotlib.pyplot as plt from create_figs_articles import CreateFigArticles SAVE_FIG = 0 c = np.array([10, 20, 40, 70, 100, 200]) eps = np.array([1, 0.94, 0.93, 0.89, 0.76, 0.8]) # eps = np.array([1, 0.94, 0.93, 0.89, 0.85, 0.8]) c = np.array([10, 20, 20, 40, 70, 100, 200, 400, 700, 1000]) eps = np.array([1, 0.99, 0.97, 0.93, 0.9, 0.89, 0.88, 0.85, 0.79, 0.79]) fontsize = 20 create_fig = CreateFigArticles(short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=fontsize) fig, ax1 = create_fig.figure_axe(name_file='fig_eps_c') ax1.set_xlabel(r'$c$') ax1.set_ylabel(r'$\varepsilon$') coef = 0.0 ax1.plot(c, eps * c**coef, 'k', linewidth=2) # ax1.set_xscale('log') # ax1.set_yscale('log') # ax1.set_xlim([kmin, kmax]) # ax1.set_ylim([8e-3, 3e0])
# small trick in order to import the module lindborg1999.py path_here = os.getcwd() path_mod_lindborg1999 = os.path.split(path_here)[0] + '/Flatness_atm' sys.path.append(path_mod_lindborg1999) from lindborg1999 import r, FL, FT flatnessT = FT flatnessL = FL from create_figs_articles import CreateFigArticles SAVE_FIG = 1 fontsize = 21 create_fig = CreateFigArticles(short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=fontsize) fig, ax1 = create_fig.figure_axe(name_file='fig_flatness_atm', fig_width_mm=200, fig_height_mm=155, size_axe=[0.13, 0.127, 0.84, 0.835]) ax1.set_xscale('log') ax1.set_yscale('log') ax1.set_xlabel('$r$ (km)') ax1.set_ylabel('$F_T$, $F_L$') l_FT = ax1.plot(r, flatnessT, 'k', linewidth=2) l_FL = ax1.plot(r, flatnessL, 'y', linewidth=2)
import baseSW1lw from solveq2d import solveq2d from create_figs_articles import CreateFigArticles SAVE_FIG = 0 nh = 960 * 2 c = 20 # c = 200 if SAVE_FIG: nh = 960 * 2 fontsize = 21 create_fig = CreateFigArticles(short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=fontsize) paths = baseSW1lw.paths_from_nh_c_f(nh, c, f=0) set_of_dir = solveq2d.SetOfDirResults(paths) dirs = set_of_dir.dirs_from_values(solver='SW1lwaves', FORCING=True, c2=c**2) path = set_of_dir.paths[0] sim = solveq2d.load_state_phys_file(t_approx=1000, name_dir=path) nx = sim.param.nx c2 = sim.param.c2 c = np.sqrt(c2) f = sim.param.f
import baseSW1lw from solveq2d import solveq2d from create_figs_articles import CreateFigArticles num_fig = 1000 SAVE_FIG = 1 nh = 240 * 2**3 # nh = 240*2**4 name_file = 'fig_spectra_c_Nx={0}'.format(nh) fontsize = 21 create_fig = CreateFigArticles(short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=fontsize) kf = baseSW1lw.kf paths = baseSW1lw.paths_from_nh(nh) set_of_dir = solveq2d.SetOfDirResults(paths) set_of_dir = set_of_dir.filter(solver='SW1lwaves', FORCING=True, f=0) def sprectra_from_c(c): set_of_dir_c = set_of_dir.filter(c=c) path = set_of_dir_c.path_larger_t_start()
import h5py import matplotlib.pylab as plt import glob import numpy as np import baseSW1lw from solveq2d import solveq2d from create_figs_articles import CreateFigArticles SAVE_FIG = 0 fontsize = 19 create_fig = CreateFigArticles(short_name_article='SW1l', SAVE_FIG=SAVE_FIG, FOR_BEAMER=False, fontsize=fontsize) dir_base = create_fig.path_base_dir + '/Results_SW1lw' c = 40 resol = 240 * 2**5 key_var = 'uy' # for transverse since r = delta x # key_var = 'ux' # for longitudinal since r = delta x str_resol = repr(resol) str_to_find_path = (dir_base + '/Pure_standing_waves_' + str_resol + '*/SE2D*c=' + repr(c)) + '_*' # print str_to_find_path