def test_pipeline_funcs(): def a(x): pass def b(x): pass pipelines = [ compose.FuncTransformer(a) | b, compose.FuncTransformer(a) | ('b', b), compose.FuncTransformer(a) | ('b', compose.FuncTransformer(b)), a | compose.FuncTransformer(b), ('a', a) | compose.FuncTransformer(b), ('a', compose.FuncTransformer(a)) | compose.FuncTransformer(b) ] for pipeline in pipelines: assert str(pipeline) == 'a | b'
def test_union_funcs(): def a(x): pass def b(x): pass pipelines = [ compose.FuncTransformer(a) + b, compose.FuncTransformer(a) + ('b', b), compose.FuncTransformer(a) + ('b', compose.FuncTransformer(b)), a + compose.FuncTransformer(b), ('a', a) + compose.FuncTransformer(b), ('a', compose.FuncTransformer(a)) + compose.FuncTransformer(b) ] for pipeline in pipelines: assert str(pipeline) == 'a + b'
def test_union_funcs(): def a(x): pass def b(x): pass pipelines = [ compose.FuncTransformer(a) + b, compose.FuncTransformer(a) + ('b', b), compose.FuncTransformer(a) + ('b', compose.FuncTransformer(b)), a + compose.FuncTransformer(b), ('a', a) + compose.FuncTransformer(b), ('a', compose.FuncTransformer(a)) + compose.FuncTransformer(b) ] for i, pipeline in enumerate(pipelines): print(i, str(pipeline)) assert str(pipeline) == 'a + b'
optimizers.SGD(lr=LR, momentum=.1)) } def add_intercept(x): return {**x, 'intercept': 1.} for name, (creme_optim, torch_optim, keras_optim) in OPTIMIZERS.items(): X_y = stream.iter_sklearn_dataset(dataset=datasets.load_boston(), shuffle=True, random_state=42) n_features = 13 creme_lin_reg = (compose.FuncTransformer(add_intercept) | linear_model.LinearRegression( optimizer=creme_optim, l2=0, intercept_lr=0)) torch_model = PyTorchNet(n_features=n_features) torch_lin_reg = PyTorchRegressor(network=torch_model, loss_fn=torch.nn.MSELoss(), optimizer=torch_optim( torch_model.parameters())) inputs = layers.Input(shape=(n_features, )) predictions = layers.Dense(1, kernel_initializer='zeros', bias_initializer='zeros')(inputs) keras_model = models.Model(inputs=inputs, outputs=predictions) keras_model.compile(optimizer=keras_optim, loss='mean_squared_error')
# Ranking ratio blue_rank = safe_mean(filter(None, [get_ranking(p) for p in blue_side])) red_rank = safe_mean(filter(None, [get_ranking(p) for p in red_side])) rank_ratio = safe_ratio(max(blue_rank, red_rank), min(blue_rank, red_rank)) return { 'mode': match['gameMode'], 'type': match['gameType'], 'champion_mastery_points_ratio': champion_points_ratio, 'total_mastery_points_ratio': total_points_ratio, 'rank_ratio': rank_ratio } MODELS = { 'v0': (compose.FuncTransformer(process_match) | compose.TransformerUnion([ compose.Whitelister( 'champion_mastery_points_ratio', 'total_mastery_points_ratio', 'rank_ratio', ), preprocessing.OneHotEncoder('mode', sparse=False), preprocessing.OneHotEncoder('type', sparse=False) ]) | preprocessing.StandardScaler() | linear_model.LinearRegression(optim.VanillaSGD(0.005))) } class Command(base.BaseCommand): def handle(self, *args, **options):