Example #1
0
def test_five_components():
    '''
    Assert that components computed are identical to the original version for n dimensions.
    '''
    np.random.seed(42)

    n_components = 5

    online_lda = LDA(
        n_components=n_components,
        number_of_documents=60,
        maximum_size_vocabulary=100,
        alpha_beta=100,
        alpha_theta=0.5,
    )

    components_list = []

    for document in DOC_SET:
        components_list.append(online_lda.fit_transform_one(document))

    for index, component in enumerate(components_list):
        assert np.array_equal(
            a1=list(component.values()),
            a2=REFERENCE_FIVE_COMPONENTS[index],
        )
Example #2
0
def test_five_components():
    """
    Assert that components computed are identical to the original version for n dimensions.
    """

    n_components = 5

    lda = LDA(n_components=n_components,
              number_of_documents=60,
              maximum_size_vocabulary=100,
              alpha_beta=100,
              alpha_theta=0.5,
              seed=42)

    components_list = []

    for document in DOC_SET:
        tokens = {token: 1 for token in document.split(' ')}
        components_list.append(lda.fit_transform_one(tokens))

    for index, component in enumerate(components_list):
        assert np.array_equal(
            a1=list(component.values()),
            a2=REFERENCE_FIVE_COMPONENTS[index],
        )
Example #3
0
def test_prunning_vocabulary():
    '''
    Vocabulary prunning is available to improve accuracy and limit memory usage.
    You can perform vocabulary prunning with parameters vocab_prune_interval (int) and
    maximum_size_vocabulary (int).
    '''
    np.random.seed(42)

    online_lda = LDA(n_components=2,
                     number_of_documents=60,
                     vocab_prune_interval=2,
                     maximum_size_vocabulary=3)

    components_list = []

    for document in DOC_SET:
        components_list.append(online_lda.fit_transform_one(x=document))

    for index, component in enumerate(components_list):
        assert np.array_equal(a1=list(component.values()),
                              a2=REFERENCE_COMPONENTS_WITH_PRUNNING[index])
Example #4
0
def test_prunning_vocabulary():
    """
    Vocabulary prunning is available to improve accuracy and limit memory usage.
    You can perform vocabulary prunning with parameters vocab_prune_interval (int) and
    maximum_size_vocabulary (int).
    """

    lda = LDA(n_components=2,
              number_of_documents=60,
              vocab_prune_interval=2,
              maximum_size_vocabulary=3,
              seed=42)

    components_list = []

    for document in DOC_SET:
        tokens = {token: 1 for token in document.split(' ')}
        components_list.append(lda.fit_transform_one(tokens))

    for index, component in enumerate(components_list):
        assert np.array_equal(a1=list(component.values()),
                              a2=REFERENCE_COMPONENTS_WITH_PRUNNING[index])