Example #1
0
                    average='macro'), [0, 1, 2, 2, 2], [0, 0, 2, 2, 1]),
 (metrics.MicroPrecision(),
  functools.partial(sk_metrics.precision_score,
                    average='micro'), [0, 1, 2, 2, 2], [0, 0, 2, 2, 1]),
 (metrics.Recall(), sk_metrics.recall_score,
  [True, False, True, True, True], [True, True, False, True, True]),
 (metrics.MacroRecall(),
  functools.partial(sk_metrics.recall_score,
                    average='macro'), [0, 1, 2, 2, 2], [0, 0, 2, 2, 1]),
 (metrics.MicroRecall(),
  functools.partial(sk_metrics.recall_score,
                    average='micro'), [0, 1, 2, 2, 2], [0, 0, 2, 2, 1]),
 (metrics.FBeta(beta=0.5),
  functools.partial(sk_metrics.fbeta_score, beta=0.5),
  [True, False, True, True, True], [True, True, False, True, True]),
 (metrics.MacroFBeta(beta=0.5),
  functools.partial(sk_metrics.fbeta_score, beta=0.5,
                    average='macro'), [0, 1, 0, 2, 2], [0, 0, 1, 1, 2]),
 (metrics.MicroFBeta(beta=0.5),
  functools.partial(sk_metrics.fbeta_score, beta=0.5,
                    average='micro'), [0, 1, 0, 2, 2], [0, 0, 1, 1, 2]),
 (metrics.F1(), sk_metrics.f1_score, [True, False, True, True, True
                                      ], [True, True, False, True, True]),
 (metrics.MacroF1(), functools.partial(
     sk_metrics.f1_score, average='macro'), [0, 1, 2, 2,
                                             2], [0, 0, 2, 2, 1]),
 (metrics.MicroF1(), functools.partial(
     sk_metrics.f1_score, average='micro'), [0, 1, 2, 2,
                                             2], [0, 0, 2, 2, 1]),
 (metrics.LogLoss(), sk_metrics.log_loss, [True, False, False, True
                                           ], [0.9, 0.1, 0.2, 0.65]),
Example #2
0
            sample_weights
        )


TEST_CASES = [
    (metrics.Accuracy(), sk_metrics.accuracy_score),
    (metrics.Precision(), sk_metrics.precision_score),
    (metrics.MacroPrecision(), functools.partial(sk_metrics.precision_score, average='macro')),
    (metrics.MicroPrecision(), functools.partial(sk_metrics.precision_score, average='micro')),
    (metrics.WeightedPrecision(), functools.partial(sk_metrics.precision_score, average='weighted')),
    (metrics.Recall(), sk_metrics.recall_score),
    (metrics.MacroRecall(), functools.partial(sk_metrics.recall_score, average='macro')),
    (metrics.MicroRecall(), functools.partial(sk_metrics.recall_score, average='micro')),
    (metrics.WeightedRecall(), functools.partial(sk_metrics.recall_score, average='weighted')),
    (metrics.FBeta(beta=.5), functools.partial(sk_metrics.fbeta_score, beta=.5)),
    (metrics.MacroFBeta(beta=.5), functools.partial(sk_metrics.fbeta_score, beta=.5, average='macro')),
    (metrics.MicroFBeta(beta=.5), functools.partial(sk_metrics.fbeta_score, beta=.5, average='micro')),
    (metrics.WeightedFBeta(beta=.5), functools.partial(sk_metrics.fbeta_score, beta=.5, average='weighted')),
    (metrics.F1(), sk_metrics.f1_score),
    (metrics.MacroF1(), functools.partial(sk_metrics.f1_score, average='macro')),
    (metrics.MicroF1(), functools.partial(sk_metrics.f1_score, average='micro')),
    (metrics.WeightedF1(), functools.partial(sk_metrics.f1_score, average='weighted')),
    (metrics.MCC(), sk_metrics.matthews_corrcoef),
    (metrics.MAE(), sk_metrics.mean_absolute_error),
    (metrics.MSE(), sk_metrics.mean_squared_error),
]


@pytest.mark.parametrize('metric, sk_metric', TEST_CASES)
@pytest.mark.filterwarnings('ignore::RuntimeWarning')
@pytest.mark.filterwarnings('ignore::sklearn.metrics.classification.UndefinedMetricWarning')