Example #1
0
    def process_balance(self, timestamp, prices):

        try:

            metrics = []

            values = self.__context.fetch_balances(timestamp)

            for dto in values if values is not None else []:

                amount = dto.balance.bc_amnt

                rate = self._calculate_evaluation(dto.evaluation, prices)

                if dto.account is None or amount is None or rate is None:
                    continue

                metric = Metric()
                metric.mc_type = 'balance'
                metric.mc_name = dto.account.ac_disp
                metric.mc_time = timestamp
                metric.mc_amnt = amount * rate
                metrics.append(metric)

            self.__context.save_metrics(metrics)

        except BaseException as e:

            self.__logger.warn('Balance : %s : %s', type(e), e.args)
Example #2
0
    def _convert_ticker(self, timestamp, prices, dto):

        threshold_minutes = self.__context.get_property(self._ID, 'ticker_threshold', 3)

        threshold_cutoff = timestamp - timedelta(minutes=int(threshold_minutes))

        if dto.ticker.tk_time.replace(tzinfo=threshold_cutoff.tzinfo) < threshold_cutoff:
            return None

        price = prices.get(dto.ticker.tk_site, {}).get(dto.ticker.tk_code)

        if price is None or price == self._ZERO or dto.product is None:
            return None

        expiry = dto.product.pr_expr

        if expiry is not None and expiry.astimezone(timestamp.tzinfo) < timestamp:
            return None

        rate = self._calculate_evaluation(dto.fund, prices)

        if rate is None:
            return None

        metric = Metric()
        metric.mc_type = 'ticker'
        metric.mc_name = dto.product.pr_disp
        metric.mc_time = timestamp
        metric.mc_amnt = price * rate

        return metric
Example #3
0
    def test_save_metrics(self):
        self.target._create_all()

        dt = datetime.now()

        m1 = Metric()
        m1.mc_type = 't1'
        m1.mc_time = dt + timedelta(minutes=1)
        m1.mc_name = 'n1'
        m1.mc_amnt = Decimal('1.2')

        m2 = Metric()
        m2.mc_type = 't2'
        m2.mc_time = dt + timedelta(minutes=2)
        m2.mc_name = 'n2'
        m2.mc_amnt = Decimal('2.3')

        m3 = copy(m1)
        m3.mc_amnt = Decimal('3.4')

        m4 = copy(m2)
        m4.mc_amnt = Decimal('4.5')

        m5 = copy(m1)
        m5.mc_name = None

        # All new records
        results = self.target.save_metrics([m1, m2])
        self.assertEqual(len(results), 2)
        self.assertTrue(m1 in results)
        self.assertTrue(m2 in results)

        # Existing records
        results = self.target.save_metrics([m3, None, m4])
        self.assertEqual(len(results), 2)
        self.assertTrue(m3 in results)
        self.assertTrue(m4 in results)

        # PK Failure
        with self.assertRaises(BaseException):
            self.target.save_metrics([m5])

        # Read-only
        self.target._is_read_only = lambda: True
        results = self.target.save_metrics([m1])
        self.assertEqual(len(results), 0)
Example #4
0
    def process_position(self, timestamp, prices):

        try:

            metrics = []

            values = self.__context.fetch_positions(timestamp)

            for dto in values if values is not None else []:

                amount = dto.position.ps_fund

                rate = self._calculate_evaluation(dto.fund, prices)

                if dto.product is None or amount is None or rate is None:
                    continue

                metric = Metric()
                metric.mc_type = 'position@upl'
                metric.mc_name = dto.product.pr_disp
                metric.mc_time = timestamp
                metric.mc_amnt = amount * rate
                metrics.append(metric)

            for dto in values if values is not None else []:

                amount = dto.position.ps_inst

                rate = self._calculate_evaluation(dto.inst, prices)

                if dto.product is None or amount is None or rate is None:
                    continue

                metric = Metric()
                metric.mc_type = 'position@qty'
                metric.mc_name = dto.product.pr_disp
                metric.mc_time = timestamp
                metric.mc_amnt = amount * rate
                metrics.append(metric)

            self.__context.save_metrics(metrics)

        except BaseException as e:

            self.__logger.warn('Position : %s : %s', type(e), e.args)
Example #5
0
    def test_Metric(self):
        value = Metric()
        self.assertEqual("{'table': 't_metric', 'type': 'None', "
                         "'time': 'None', 'name': 'None', 'amnt': 'None'}", str(value))

        value.mc_type = 'foo'
        value.mc_time = datetime.fromtimestamp(1234567890.123456, tz=utc)
        value.mc_name = 'bar'
        value.mc_amnt = Decimal('1.2')
        self.assertEqual("{'table': 't_metric', 'type': 'foo', "
                         "'time': '2009-02-13 23:31:30.123456 UTC', 'name': 'bar', 'amnt': '1.2'}", str(value))
Example #6
0
    def process_transaction_trade(self, timestamp, prices):

        try:

            metrics = []

            offset = timedelta(minutes=int(
                self.__context.get_property(self._ID, 'offset', 9 * 60)))

            t = timestamp + offset

            windows = {
                'DAY':
                t.replace(microsecond=0, second=0, minute=0, hour=0) - offset,
                'MTD':
                t.replace(microsecond=0, second=0, minute=0, hour=0, day=1) -
                offset,
                'YTD':
                t.replace(
                    microsecond=0, second=0, minute=0, hour=0, day=1, month=1)
                - offset,
            }

            for key, val in windows.items():

                values = self.__context.fetch_transactions(val, timestamp)

                for dto in values if values is not None else []:

                    inst_qty = dto.tx_net_inst
                    fund_qty = dto.tx_net_fund

                    inst_rate = self.calculate_evaluation(dto.ev_inst, prices)
                    fund_rate = self.calculate_evaluation(dto.ev_fund, prices)

                    if dto.product is None \
                            or inst_qty is None or fund_qty is None \
                            or inst_rate is None or fund_rate is None:
                        continue

                    metric = Metric()
                    metric.mc_type = 'trade@' + key
                    metric.mc_name = dto.product.pr_disp
                    metric.mc_time = timestamp
                    metric.mc_amnt = (inst_qty * inst_rate) + (fund_qty *
                                                               fund_rate)
                    metrics.append(metric)

            self.__context.save_metrics(metrics)

        except BaseException as e:

            self.__logger.warn('Transaction (trade) : %s : %s', type(e),
                               e.args)
Example #7
0
    def process_transaction_volume(self, timestamp, prices):

        try:

            metrics = []

            windows = {
                '12H': timestamp - timedelta(hours=12),
                '01D': timestamp - timedelta(hours=24),
                '30D': timestamp - timedelta(days=30),
            }

            for key, val in windows.items():

                values = self.__context.fetch_transactions(val, timestamp)

                for dto in values if values is not None else []:

                    amount = dto.tx_grs_fund

                    rate = self.calculate_evaluation(dto.ev_fund, prices)

                    if dto.product is None or amount is None or rate is None:
                        continue

                    metric = Metric()
                    metric.mc_type = 'volume@' + key
                    metric.mc_name = dto.product.pr_disp
                    metric.mc_time = timestamp
                    metric.mc_amnt = amount * rate
                    metrics.append(metric)

            self.__context.save_metrics(metrics)

        except BaseException as e:

            self.__logger.warn('Transaction (volume) : %s : %s', type(e),
                               e.args)
Example #8
0
    def process_ticker(self, timestamp):

        prices = None

        try:

            values = self.__context.fetch_tickers(timestamp,
                                                  include_expired=True)

            prices = defaultdict(lambda: dict())

            for dto in values if values is not None else []:

                ticker = dto.ticker
                ask = ticker.tk_ask if ticker.tk_ask != self._ZERO else None
                bid = ticker.tk_bid if ticker.tk_bid != self._ZERO else None
                ltp = ticker.tk_ltp if ticker.tk_ltp != self._ZERO else None

                price = None

                if ask is not None and bid is not None:
                    price = (ask + bid) * self._HALF

                if price is None:
                    price = ask

                if price is None:
                    price = bid

                if price is None:
                    price = ltp

                prices[ticker.tk_site][ticker.tk_code] = price

            metrics = []

            threshold_minutes = self.__context.get_property(
                self._ID, 'ticker_threshold', 3)

            threshold_cutoff = timestamp - timedelta(
                minutes=int(threshold_minutes))

            for dto in values if values is not None else []:

                if dto.ticker.tk_time.replace(
                        tzinfo=threshold_cutoff.tzinfo) < threshold_cutoff:
                    continue

                price = prices[dto.ticker.tk_site][dto.ticker.tk_code]

                if price is None or price == self._ZERO or dto.product is None:
                    continue

                expiry = dto.product.pr_expr

                if expiry is not None and expiry.astimezone(
                        timestamp.tzinfo) < timestamp:
                    continue

                rate = self.calculate_evaluation(dto.fund, prices)

                if rate is None:
                    continue

                metric = Metric()
                metric.mc_type = 'ticker'
                metric.mc_name = dto.product.pr_disp
                metric.mc_time = timestamp
                metric.mc_amnt = price * rate
                metrics.append(metric)

            self.__context.save_metrics(metrics)

        except BaseException as e:

            self.__logger.warn('Ticker : %s : %s', type(e), e.args)

        return prices