Example #1
0
def gen_raw_data(n: int, **kwargs):
    """
    Generate a csbdeep RawData object with random images generated by :func:`my text
    <dispim.neural.datagen.gen_training_data>`

    :param n:
    :param use_noise:
    :param use_psf:
    :param use_subsampling:
    :param shape:
    :return:
    """
    images_degr, images, psf_as, psf_bs = gen_training_data(n, **kwargs)
    return RawData.from_arrays(images_degr, images,
                               axes='XYZC'), psf_as, psf_bs
Example #2
0
 def _create(img_size,img_axes,patch_size,patch_axes):
     U,V = (rng.uniform(size=(n_images,)+img_size) for _ in range(2))
     X,Y,XYaxes = create_patches (
         raw_data            = RawData.from_arrays(U,V,img_axes),
         patch_size          = patch_size,
         patch_axes          = patch_axes,
         n_patches_per_image = n_patches_per_image,
         save_file           = save_file
     )
     (_X,_Y), val_data, _XYaxes = load_training_data(save_file,verbose=True)
     assert val_data is None
     assert _XYaxes[-1 if backend_channels_last else 1] == 'C'
     _X,_Y = (move_image_axes(u,fr=_XYaxes,to=XYaxes) for u in (_X,_Y))
     assert np.allclose(X,_X,atol=1e-6)
     assert np.allclose(Y,_Y,atol=1e-6)
     assert set(XYaxes) == set(_XYaxes)
     assert load_training_data(save_file,validation_split=0.5)[2] is not None
     assert all(len(x)==3 for x in load_training_data(save_file,n_images=3)[0])
Example #3
0
imgList = os.listdir(train_dir)
labelList = os.listdir(label_dir)

imgArray = []
for image in tqdm(imgList, 'Reading img'):
    imgArray.append(imread(os.path.join(train_dir, image)))

labelArray = []
for label in tqdm(labelList, 'Reading label'):
    labelArray.append(imread(os.path.join(label_dir, label)))

print(imgArray[0].shape)
print(labelArray[0].shape)

raw_data = RawData.from_arrays(imgArray, labelArray, axes='YX')

X, Y, XY_axes = create_patches(
    raw_data=raw_data,
    patch_size=(128, 128, 1),
    patch_axes='YXC',
    n_patches_per_image=25,
    save_file=
    '/mnt/AE3205C73205958D/Data/3dliver_local/pc_adult/2d_slices/imagesXY/image_full/mydata_128x128patch.npz'
)

(X, Y), (X_val, Y_val), axes = load_training_data(
    '/mnt/AE3205C73205958D/Data/3dliver_local/pc_adult/2d_slices/imagesXY/image_full/mydata_128x128patch.npz',
    validation_split=0.1,
    verbose=True)
# print('image size         =', x.shape)
# print('Z subsample factor =', subsample)
# plt.figure(figsize=(389/100, 389/100))
# plt.imshow(x, cmap='gray')
# plt.show()
# print('image size         =', x.shape)
# print('Z subsample factor =', subsample)

# raw_data = RawData.from_folder (
#     basepath    = 'data',
#     source_dirs = ['simulator_data'],
#     target_dir  = 'simulator_data',
#     axes        = 'CYX',
# )

raw_data = RawData.from_arrays(X=[x], Y=[x], axes='CYX')

anisotropic_transform = anisotropic_distortions(
    subsample=1,
    psf=np.ones((3)) / 9,  # use the actual PSF here
    psf_axes='Y',
    # poisson_noise = True,
    # gauss_sigma = 0.1
)

X, Y, XY_axes = create_patches(
    raw_data=raw_data,
    patch_size=(x.shape[0], x.shape[1], x.shape[2]),
    n_patches_per_image=1,
    transforms=[anisotropic_transform],
)
Example #5
0
def get_dataset(pd_scribbles,n_patches_per_image_train=30,n_patches_per_image_val=8,patch_size=(128, 128),
                p_label = 0.6,val_perc = 0.3,verbose = True, border = False):

    X_train = None
    X_val = None
    for i in range(len(pd_scribbles)):

        ## read image and label
        npz_read = np.load(pd_scribbles['input_dir'][i] + pd_scribbles['input_file'][i])
        image = npz_read['image']
        label = npz_read['label']
        nuclei = np.zeros_like(label)
        nuclei[label > 0] = 1

        ## read scribbles
        npz_read = np.load(pd_scribbles['input_dir'][i] + pd_scribbles['scribble_file'][i])
        scribble = npz_read['scribble']

        raw_image_in = image + 0  # normalize(image,pmin=pmin,pmax=pmax,clip = False)

        ## Sample validation mask
        patch_val_size = [int(image.shape[0] * val_perc),
                          int(image.shape[1] * val_perc)]
        all_back = True
        while all_back:

            val_mask = np.zeros([raw_image_in.shape[0], raw_image_in.shape[1]])
            ix_x = np.random.randint(0, raw_image_in.shape[0] - patch_val_size[0])
            ix_y = np.random.randint(0, raw_image_in.shape[0] - patch_val_size[1])

            val_mask[ix_x:ix_x + patch_val_size[0], ix_y:ix_y + patch_val_size[1]] = 1

            if np.sum(val_mask * np.sum(scribble[...], axis=-1)) > 10:
                all_back = False

        ## Generate patches
        raw_data = RawData.from_arrays(raw_image_in[np.newaxis, ...], scribble[np.newaxis, ...])

        ## for plot ##
        if verbose:
            aux = np.zeros([raw_image_in.shape[0], raw_image_in.shape[1], 3])
            if len(raw_image_in.shape)>2:
                aux[..., 1] = np.sum(raw_image_in,axis=-1) * 0.8
            else:
                aux[..., 1] = raw_image_in * 0.8
            aux[..., 0] = scribble[..., 0]
            aux[..., 2] = np.sum(scribble[..., 1:], axis=2)
        ###

        for group in ['val', 'train']:
            if group == 'val':
                fov_mask = np.array(val_mask)
                n_patches_per_image = n_patches_per_image_val + 0
                if verbose:
                    plt.figure(figsize=(10, 5))
                    plt.subplot(1, 2, 1)
                    plt.title('Validation FOV')
                    plt.imshow(fov_mask[..., np.newaxis] * aux)

            else:
                fov_mask = 1 - np.array(val_mask)
                n_patches_per_image = n_patches_per_image_train + 0
                if verbose:
                    plt.subplot(1, 2, 2)
                    plt.title('Train FOV')
                    plt.imshow(fov_mask[..., np.newaxis] * aux)
                    plt.show()

            X_aux, Y_aux, axes = generate_patches_syxc(raw_data, patch_size,
                                                       int(n_patches_per_image * (1 - p_label)),
                                                       normalization=None, patch_filter=None,
                                                       fov_mask=fov_mask)

            n_patches_add = int(n_patches_per_image - X_aux.shape[0])

            if n_patches_add > 0:
                X_labeled_aux, Y_labeled_aux, axes = generate_patches_syxc(raw_data, patch_size,
                                                                           n_patches_add,
                                                                           normalization=None,
                                                                           mask_filter_index=np.arange(
                                                                               scribble.shape[-1]),
                                                                           fov_mask=fov_mask)
                if X_labeled_aux is not None:
                    X_aux = np.concatenate([X_aux, X_labeled_aux], axis=0)
                    Y_aux = np.concatenate([Y_aux, Y_labeled_aux], axis=0)

            if group == 'val':
                if X_val is None:
                    X_val = np.array(X_aux)
                    Y_val = np.array(Y_aux)
                else:
                    X_val = np.concatenate([X_val, X_aux], axis=0)
                    Y_val = np.concatenate([Y_val, Y_aux], axis=0)

            else:
                if X_train is None:
                    X_train = np.array(X_aux)
                    Y_train = np.array(Y_aux)
                else:
                    X_train = np.concatenate([X_train, X_aux], axis=0)
                    Y_train = np.concatenate([Y_train, Y_aux], axis=0)

    print(Y_train.shape,Y_val.shape)
    if border:
        return X_train,Y_train,X_val,Y_val
    else:
        out_channels = int(Y_train.shape[-1]/3)
        Y_train_aux = np.zeros([Y_train.shape[0], Y_train.shape[1], Y_train.shape[2], out_channels * 2])
        Y_val_aux = np.zeros([Y_val.shape[0], Y_val.shape[1], Y_val.shape[2], out_channels * 2])
        # print(out_channels,Y_train.shape[2])
        for j in np.arange(out_channels):
            # print(j*2,j*out_channels)
            Y_train_aux[..., 2*j] = np.array(Y_train[..., out_channels*j])  # foreground
            Y_train_aux[..., 2*j+1] = Y_train[..., out_channels*j+1] + Y_train[..., out_channels*j+2]  # Border + background are background

            Y_val_aux[..., 2*j] = np.array(Y_val[..., out_channels*j])  # foreground
            Y_val_aux[..., 2*j+1] = Y_val[..., out_channels*j+1] + Y_val[..., out_channels*j+2]  # Border + background are background
        return X_train,Y_train_aux,X_val,Y_val_aux