Example #1
0
    measure_performance(1, "ac3_sudoku_problem", ac3_sudoku_problem,
                        "heuristic_backtracking_search", inference=csp.forward_check, with_history=True,
                        read_only_variables=read_only_variables)
    measure_performance(1, "ac3_sudoku_problem", ac3_sudoku_problem,
                        "naive_cycle_cutset", with_history=True, read_only_variables=read_only_variables)
    measure_performance(2, "ac3_sudoku_problem", ac3_sudoku_problem,
                        "min_conflicts", 100000, with_history=True, read_only_variables=read_only_variables)
    measure_performance(2, "ac3_sudoku_problem", ac3_sudoku_problem,
                        "constraints_weighting", 10000, with_history=True, read_only_variables=read_only_variables)
    general_genetic_ac3_sudoku_problem = csp.GeneralGeneticConstraintProblem(ac3_sudoku_problem, 0.1)
    measure_performance(2, "general_genetic_ac3_magic_square_problem", general_genetic_ac3_sudoku_problem,
                        "genetic_local_search", 1000, 100, 0.1, read_only_variables=read_only_variables)


ac4_start_time = time.process_time()
ac4_is_arc_consistent = csp.ac4(ac4_sudoku_problem)
ac4_end_time = time.process_time()
if ac4_is_arc_consistent:
    print()
    print()
    print("-" * 145)
    print("using ac4 as a preprocessing stage which took", ac4_end_time - ac4_start_time, "seconds")
    print("-" * 145)
    measure_performance(1, "ac4_sudoku_problem", ac4_sudoku_problem,
                        "heuristic_backtracking_search", with_history=True, read_only_variables=read_only_variables)
    measure_performance(1, "ac4_sudoku_problem", ac4_sudoku_problem,
                        "heuristic_backtracking_search", inference=csp.forward_check, with_history=True,
                        read_only_variables=read_only_variables)
    measure_performance(1, "ac4_sudoku_problem", ac4_sudoku_problem,
                        "naive_cycle_cutset", with_history=True, read_only_variables=read_only_variables)
    measure_performance(2, "ac4_sudoku_problem", ac4_sudoku_problem,
Example #2
0
                        with_history=True)
    measure_performance(2, "ac3_n_queens_problem", ac3_n_queens_problem,
                        "simulated_annealing", 100000, 0.5, 0.99999)
    measure_performance(2, "ac3_n_queens_problem", ac3_n_queens_problem,
                        "random_restart_first_choice_hill_climbing", 100, 100,
                        10)
    general_genetic_n_queens_problem = csp.GeneralGeneticConstraintProblem(
        ac3_n_queens_problem, 0.1)
    measure_performance(2, "ac3_n_queens_problem",
                        general_genetic_n_queens_problem,
                        "genetic_local_search", 100, 100, 0.1)

ac4_n_queens_problem = copy.deepcopy(n_queens_problem)
ac4_n_queens_problem.unassign_all_variables()
ac4_start_time = time.process_time()
ac4_is_arc_consistent = csp.ac4(ac4_n_queens_problem)
ac4_end_time = time.process_time()
if ac4_is_arc_consistent:
    print()
    print()
    print("-" * 145)
    print("using ac4 as a preprocessing stage which took",
          ac4_end_time - ac4_start_time, "seconds")
    print("-" * 145)
    measure_performance(1,
                        "ac4_n_queens_problem",
                        ac4_n_queens_problem,
                        "backtracking_search",
                        with_history=True)
    measure_performance(1,
                        "ac4_n_queens_problem",
Example #3
0
                        ac3_car_assembly_problem, "simulated_annealing",
                        100000, 0.5, 0.99999)
    measure_performance(2, "ac3_car_assembly_problem",
                        ac3_car_assembly_problem,
                        "random_restart_first_choice_hill_climbing", 10, 10,
                        10)
    general_genetic_car_assembly_problem = csp.GeneralGeneticConstraintProblem(
        ac3_car_assembly_problem, 0.1)
    measure_performance(2, "ac3_car_assembly_problem",
                        general_genetic_car_assembly_problem,
                        "genetic_local_search", 100, 100, 0.1)

ac4_car_assembly_problem = copy.deepcopy(car_assembly_problem)
ac4_car_assembly_problem.unassign_all_variables()
ac4_start_time = time.process_time()
ac4_is_arc_consistent = csp.ac4(ac4_car_assembly_problem)
ac4_end_time = time.process_time()
if ac4_is_arc_consistent:
    print()
    print()
    print("-" * 145)
    print("using ac4 as a preprocessing stage which took",
          ac4_end_time - ac4_start_time, "seconds")
    print("-" * 145)
    measure_performance(1,
                        "ac4_car_assembly_problem",
                        ac4_car_assembly_problem,
                        "backtracking_search",
                        with_history=True)
    measure_performance(1,
                        "ac4_car_assembly_problem",
Example #4
0
                        ac3_verbal_arithmetic_problem, "simulated_annealing",
                        100000, 0.5, 0.99999)
    measure_performance(2, "ac3_verbal_arithmetic_problem",
                        ac3_verbal_arithmetic_problem,
                        "random_restart_first_choice_hill_climbing", 100, 100,
                        10)
    general_genetic_verbal_arithmetic_problem = csp.GeneralGeneticConstraintProblem(
        ac3_verbal_arithmetic_problem, 0.1)
    measure_performance(2, "ac3_verbal_arithmetic_problem",
                        general_genetic_verbal_arithmetic_problem,
                        "genetic_local_search", 100, 100, 0.1)

ac4_verbal_arithmetic_problem = copy.deepcopy(verbal_arithmetic_problem)
ac4_verbal_arithmetic_problem.unassign_all_variables()
ac4_start_time = time.process_time()
ac4_is_arc_consistent = csp.ac4(ac4_verbal_arithmetic_problem)
ac4_end_time = time.process_time()
if ac4_is_arc_consistent:
    print()
    print()
    print("-" * 145)
    print("using ac4 as a preprocessing stage which took",
          ac4_end_time - ac4_start_time, "seconds")
    print("-" * 145)
    measure_performance(1,
                        "ac4_verbal_arithmetic_problem",
                        ac4_verbal_arithmetic_problem,
                        "backtracking_search",
                        with_history=True)
    measure_performance(1,
                        "ac4_verbal_arithmetic_problem",
Example #5
0
                        ac3_map_coloring_problem, "simulated_annealing",
                        100000, 0.5, 0.99999)
    measure_performance(2, "ac3_map_coloring_problem",
                        ac3_map_coloring_problem,
                        "random_restart_first_choice_hill_climbing", 100, 100,
                        10)
    general_genetic_map_coloring_problem = csp.GeneralGeneticConstraintProblem(
        ac3_map_coloring_problem, 0.1)
    measure_performance(2, "ac3_map_coloring_problem",
                        general_genetic_map_coloring_problem,
                        "genetic_local_search", 100, 100, 0.1)

ac4_map_coloring_problem = copy.deepcopy(map_coloring_problem)
ac4_map_coloring_problem.unassign_all_variables()
ac4_start_time = time.process_time()
ac4_is_arc_consistent = csp.ac4(ac4_map_coloring_problem)
ac4_end_time = time.process_time()
if ac4_is_arc_consistent:
    print()
    print()
    print("-" * 145)
    print("using ac4 as a preprocessing stage which took",
          ac4_end_time - ac4_start_time, "seconds")
    print("-" * 145)
    measure_performance(1,
                        "ac4_map_coloring_problem",
                        ac4_map_coloring_problem,
                        "backtracking_search",
                        with_history=True)
    measure_performance(1,
                        "ac4_map_coloring_problem",
Example #6
0
 def test_ac4_one(self):
     self.const_problem1.unassign_all_variables()
     res = csp.ac4(self.const_problem1)
     self.assertTrue(res)
Example #7
0
 def test_ac4_three(self):
     res = csp.ac4(self.const_problem3)
     self.assertTrue(res)
     wanted_reduced_domains = [[1, 2], [2, 3]]
     for var in self.const_problem3.get_variables():
         self.assertIn(var.domain, wanted_reduced_domains)
                        with_history=True)
    measure_performance(2, "ac3_einstein_problem", ac3_einstein_problem,
                        "simulated_annealing", 100000, 0.5, 0.99999)
    measure_performance(2, "ac3_einstein_problem", ac3_einstein_problem,
                        "random_restart_first_choice_hill_climbing", 100, 100,
                        10)
    general_genetic_ac3_einstein_problem = csp.GeneralGeneticConstraintProblem(
        ac3_einstein_problem, 0.1)
    measure_performance(2, "ac3_einstein_problem",
                        general_genetic_ac3_einstein_problem,
                        "genetic_local_search", 100, 100, 0.1)

ac4_einstein_problem = copy.deepcopy(einstein_problem)
ac4_einstein_problem.unassign_all_variables()
ac4_start_time = time.process_time()
ac4_is_arc_consistent = csp.ac4(ac4_einstein_problem)
ac4_end_time = time.process_time()
if ac4_is_arc_consistent:
    print()
    print()
    print("-" * 145)
    print("using ac4 as a preprocessing stage which took",
          ac4_end_time - ac4_start_time, "seconds")
    print("-" * 145)
    measure_performance(1,
                        "ac4_einstein_problem",
                        ac4_einstein_problem,
                        "heuristic_backtracking_search",
                        with_history=True)
    measure_performance(1,
                        "ac4_einstein_problem",
Example #9
0
    measure_performance(2, "ac3_magic_square_problem", ac3_magic_square_problem,
                        "min_conflicts", 100000, with_history=True)
    measure_performance(2, "ac3_magic_square_problem", ac3_magic_square_problem,
                        "constraints_weighting", 10000, with_history=True)
    measure_performance(2, "ac3_magic_square_problem", ac3_magic_square_problem,
                        "simulated_annealing", 100000, 0.5, 0.99999)
    measure_performance(2, "ac3_magic_square_problem", ac3_magic_square_problem,
                        "random_restart_first_choice_hill_climbing", 100, 100, 10)
    general_genetic_ac3_magic_square_problem = csp.GeneralGeneticConstraintProblem(ac3_magic_square_problem, 0.1)
    measure_performance(2, "general_genetic_ac3_magic_square_problem", general_genetic_ac3_magic_square_problem,
                        "genetic_local_search", 1000, 100, 0.1)

ac4_magic_square_problem = copy.deepcopy(magic_square_problem)
ac4_magic_square_problem.unassign_all_variables()
ac4_start_time = time.process_time()
ac4_is_arc_consistent = csp.ac4(ac4_magic_square_problem)
ac4_end_time = time.process_time()
if ac4_is_arc_consistent:
    print()
    print()
    print("-" * 145)
    print("using ac4 as a preprocessing stage which took", ac4_end_time - ac4_start_time, "seconds")
    print("-" * 145)
    measure_performance(1, "ac4_magic_square_problem", ac4_magic_square_problem,
                        "backtracking_search", with_history=True)
    measure_performance(1, "ac4_magic_square_problem", ac4_magic_square_problem,
                        "backtracking_search", inference=csp.forward_check, with_history=True)
    measure_performance(1, "ac4_magic_square_problem", ac4_magic_square_problem,
                        "heuristic_backtracking_search", with_history=True)
    measure_performance(1, "ac4_magic_square_problem", ac4_magic_square_problem,
                        "heuristic_backtracking_search", inference=csp.forward_check, with_history=True)