def test_i_consistency_one(self): rand_var = random.choice(tuple(self.const_problem1.get_variables())) rand_var.assign(random.choice(rand_var.domain)) self.assertRaises(AssertionError, csp.i_consistency, self.const_problem1, 17) self.const_problem1.unassign_all_variables() res = csp.i_consistency(self.const_problem1, 1) self.assertTrue(res)
with_history=True) measure_performance(2, "pc2_n_queens_problem", pc2_n_queens_problem, "simulated_annealing", 100000, 0.5, 0.99999) measure_performance(2, "pc2_n_queens_problem", pc2_n_queens_problem, "random_restart_first_choice_hill_climbing", 100, 100, 10) general_genetic_n_queens_problem = csp.GeneralGeneticConstraintProblem( pc2_n_queens_problem, 0.1) measure_performance(2, "pc2_n_queens_problem", general_genetic_n_queens_problem, "genetic_local_search", 100, 100, 0.1) two_consistency_n_queens_problem = copy.deepcopy(n_queens_problem) two_consistency_n_queens_problem.unassign_all_variables() two_consistency_start_time = time.process_time() is_two_consistent = csp.i_consistency(two_consistency_n_queens_problem, 2) two_consistency_end_time = time.process_time() if is_two_consistent: print() print() print("-" * 145) print("using 2-consistency as a preprocessing stage which took", two_consistency_end_time - two_consistency_start_time, "seconds") print("-" * 145) measure_performance(1, "two_consistency_n_queens_problem", two_consistency_n_queens_problem, "backtracking_search", with_history=True) measure_performance(1, "two_consistency_n_queens_problem",
100000, 0.5, 0.99999) measure_performance(2, "pc2_verbal_arithmetic_problem", pc2_verbal_arithmetic_problem, "random_restart_first_choice_hill_climbing", 100, 100, 10) general_genetic_verbal_arithmetic_problem = csp.GeneralGeneticConstraintProblem( pc2_verbal_arithmetic_problem, 0.1) measure_performance(2, "pc2_verbal_arithmetic_problem", general_genetic_verbal_arithmetic_problem, "genetic_local_search", 100, 100, 0.1) two_consistency_verbal_arithmetic_problem = copy.deepcopy( verbal_arithmetic_problem) two_consistency_verbal_arithmetic_problem.unassign_all_variables() two_consistency_start_time = time.process_time() is_two_consistent = csp.i_consistency( two_consistency_verbal_arithmetic_problem, 2) two_consistency_end_time = time.process_time() if is_two_consistent: print() print() print("-" * 145) print("using 2-consistency as a preprocessing stage which took", two_consistency_end_time - two_consistency_start_time, "seconds") print("-" * 145) measure_performance(1, "two_consistency_verbal_arithmetic_problem", two_consistency_verbal_arithmetic_problem, "backtracking_search", with_history=True) measure_performance(1, "two_consistency_verbal_arithmetic_problem",
pc2_car_assembly_problem, "simulated_annealing", 100000, 0.5, 0.99999) measure_performance(2, "pc2_car_assembly_problem", pc2_car_assembly_problem, "random_restart_first_choice_hill_climbing", 10, 10, 10) general_genetic_car_assembly_problem = csp.GeneralGeneticConstraintProblem( pc2_car_assembly_problem, 0.1) measure_performance(2, "pc2_car_assembly_problem", general_genetic_car_assembly_problem, "genetic_local_search", 100, 100, 0.1) two_consistency_car_assembly_problem = copy.deepcopy(car_assembly_problem) two_consistency_car_assembly_problem.unassign_all_variables() two_consistency_start_time = time.process_time() is_two_consistent = csp.i_consistency(two_consistency_car_assembly_problem, 2) two_consistency_end_time = time.process_time() if is_two_consistent: print() print() print("-" * 145) print("using 2-consistency as a preprocessing stage which took", two_consistency_end_time - two_consistency_start_time, "seconds") print("-" * 145) measure_performance(1, "two_consistency_car_assembly_problem", two_consistency_car_assembly_problem, "backtracking_search", with_history=True) measure_performance(1, "two_consistency_car_assembly_problem",
pc2_map_coloring_problem, "simulated_annealing", 100000, 0.5, 0.99999) measure_performance(2, "pc2_map_coloring_problem", pc2_map_coloring_problem, "random_restart_first_choice_hill_climbing", 100, 100, 10) general_genetic_map_coloring_problem = csp.GeneralGeneticConstraintProblem( pc2_map_coloring_problem, 0.1) measure_performance(2, "pc2_map_coloring_problem", general_genetic_map_coloring_problem, "genetic_local_search", 100, 100, 0.1) two_consistency_map_coloring_problem = copy.deepcopy(map_coloring_problem) two_consistency_map_coloring_problem.unassign_all_variables() two_consistency_start_time = time.process_time() is_two_consistent = csp.i_consistency(two_consistency_map_coloring_problem, 2) two_consistency_end_time = time.process_time() if is_two_consistent: print() print() print("-" * 145) print("using 2-consistency as a preprocessing stage which took", two_consistency_end_time - two_consistency_start_time, "seconds") print("-" * 145) measure_performance(1, "two_consistency_map_coloring_problem", two_consistency_map_coloring_problem, "backtracking_search", with_history=True) measure_performance(1, "two_consistency_map_coloring_problem",
def test_i_consistency_seven(self): res = csp.i_consistency(self.const_problem3, 2) self.assertTrue(res)
def test_i_consistency_five(self): res = csp.i_consistency(self.const_problem2, 2) self.assertFalse(res)
def test_i_consistency_four(self): res = csp.i_consistency(self.const_problem2, 1) self.assertTrue(res)
def test_i_consistency_three(self): res = csp.i_consistency(self.const_problem1, 3) self.assertFalse(res)
with_history=True) measure_performance(2, "pc2_einstein_problem", pc2_einstein_problem, "simulated_annealing", 100000, 0.5, 0.99999) measure_performance(2, "pc2_einstein_problem", pc2_einstein_problem, "random_restart_first_choice_hill_climbing", 100, 100, 10) general_genetic_pc2_einstein_problem = csp.GeneralGeneticConstraintProblem( pc2_einstein_problem, 0.1) measure_performance(2, "pc2_einstein_problem", general_genetic_pc2_einstein_problem, "genetic_local_search", 100, 100, 0.1) two_consistency_einstein_problem = copy.deepcopy(einstein_problem) two_consistency_einstein_problem.unassign_all_variables() two_consistency_start_time = time.process_time() is_two_consistent = csp.i_consistency(two_consistency_einstein_problem, 2) two_consistency_end_time = time.process_time() if is_two_consistent: print() print() print("-" * 145) print("using 2-consistency as a preprocessing stage which took", two_consistency_end_time - two_consistency_start_time, "seconds") print("-" * 145) measure_performance(1, "two_consistency_einstein_problem", two_consistency_einstein_problem, "backtracking_search", with_history=True) measure_performance(1, "two_consistency_einstein_problem",
measure_performance(2, "pc2_magic_square_problem", pc2_magic_square_problem, "min_conflicts", 100000, with_history=True) measure_performance(2, "pc2_magic_square_problem", pc2_magic_square_problem, "constraints_weighting", 10000, with_history=True) measure_performance(2, "pc2_magic_square_problem", pc2_magic_square_problem, "simulated_annealing", 100000, 0.5, 0.99999) measure_performance(2, "pc2_magic_square_problem", pc2_magic_square_problem, "random_restart_first_choice_hill_climbing", 100, 100, 10) general_genetic_pc2_magic_square_problem = csp.GeneralGeneticConstraintProblem(pc2_magic_square_problem, 0.1) measure_performance(2, "general_genetic_pc2_magic_square_problem", general_genetic_pc2_magic_square_problem, "genetic_local_search", 1000, 1000, 0.1) two_consistency_magic_square_problem = copy.deepcopy(magic_square_problem) two_consistency_magic_square_problem.unassign_all_variables() two_consistency_start_time = time.process_time() is_two_consistent = csp.i_consistency(two_consistency_magic_square_problem, 2) two_consistency_end_time = time.process_time() if is_two_consistent: print() print() print("-" * 145) print("using 2-consistency as a preprocessing stage which took", two_consistency_end_time - two_consistency_start_time, "seconds") print("-" * 145) measure_performance(1, "two_consistency_magic_square_problem", two_consistency_magic_square_problem, "backtracking_search", with_history=True) measure_performance(1, "two_consistency_magic_square_problem", two_consistency_magic_square_problem, "backtracking_search", inference=csp.forward_check, with_history=True) measure_performance(1, "two_consistency_magic_square_problem", two_consistency_magic_square_problem, "heuristic_backtracking_search", with_history=True) measure_performance(1, "two_consistency_magic_square_problem", two_consistency_magic_square_problem,