def subdivideCubicPath( sp, flat, i=1 ): """ Break up a bezier curve into smaller curves, each of which is approximately a straight line within a given tolerance (the "smoothness" defined by [flat]). This is a modified version of cspsubdiv.cspsubdiv(). I rewrote the recursive call because it caused recursion-depth errors on complicated line segments. """ while True: while True: if i >= len( sp ): return p0 = sp[i - 1][1] p1 = sp[i - 1][2] p2 = sp[i][0] p3 = sp[i][1] b = ( p0, p1, p2, p3 ) if cspsubdiv.maxdist( b ) > flat: break i += 1 one, two = beziersplitatt( b, 0.5 ) sp[i - 1][2] = one[1] sp[i][0] = two[2] p = [one[2], one[3], two[1]] sp[i:1] = [p]
def subdivideCubicPath(sp, flat, i=1): ''' [ Lifted from eggbot.py with impunity ] Break up a bezier curve into smaller curves, each of which is approximately a straight line within a given tolerance (the "smoothness" defined by [flat]). This is a modified version of cspsubdiv.cspsubdiv(): rewritten because recursion-depth errors on complicated line segments could occur with cspsubdiv.cspsubdiv(). ''' while True: while True: if i >= len(sp): return p0 = sp[i - 1][1] p1 = sp[i - 1][2] p2 = sp[i][0] p3 = sp[i][1] b = (p0, p1, p2, p3) if cspsubdiv.maxdist(b) > flat: break i += 1 one, two = bezmisc.beziersplitatt(b, 0.5) sp[i - 1][2] = one[1] sp[i][0] = two[2] p = [one[2], one[3], two[1]] sp[i:1] = [p]
def subdivideCubicPath(sp, flat, i=1): """ Break up a bezier curve into smaller curves, each of which is approximately a straight line within a given tolerance (the "smoothness" defined by [flat]). This is a modified version of cspsubdiv.cspsubdiv(). From Openscad plugins """ while True: while True: if i >= len(sp): return p0 = sp[i - 1][1] p1 = sp[i - 1][2] p2 = sp[i][0] p3 = sp[i][1] b = (p0, p1, p2, p3) if cspsubdiv.maxdist(b) > flat: break i += 1 one, two = bezmisc.beziersplitatt(b, 0.5) sp[i - 1][2] = one[1] sp[i][0] = two[2] p = [one[2], one[3], two[1]] sp[i:1] = [p]
def subdivideCubicPath(sp, flat, i=1): while True: while True: if i >= len(sp): return p0 = sp[i - 1][1] p1 = sp[i - 1][2] p2 = sp[i][0] p3 = sp[i][1] b = (p0, p1, p2, p3) if cspsubdiv.maxdist(b) > flat: break i += 1 one, two = beziersplitatt(b, 0.5) sp[i - 1][2] = one[1] sp[i][0] = two[2] p = [one[2], one[3], two[1]] sp[i:1] = [p]
def compatCspSubDivMaxDist(b): if isPython3(): return bezier.maxdist(b) else: return cspsubdiv.maxdist(b)