authorName] = interestingauthors.get( authorName, 0) + 1 authorscores[( authorName, areaname, year)] = authorscores.get( (authorName, areaname, year), 0) + 1.0 authorscoresAdjusted[( authorName, areaname, year)] = authorscoresAdjusted.get( (authorName, areaname, year), 0) + 1.0 / authorsOnPaper return (interestingauthors, authorscores, authorscoresAdjusted, authlogs) fdict = csv2dict_str_str('faculty-affiliations.csv') (intauthors_gl, authscores_gl, authscoresAdjusted_gl, authlog_gl) = parseDBLP(fdict) f = open('generated-author-info.csv', 'w') f.write('"name","dept","area","count","adjustedcount","year"\n') for (authorName, area, year) in authscores_gl: count = authscores_gl[(authorName, area, year)] countAdjusted = authscoresAdjusted_gl[(authorName, area, year)] f.write(authorName.encode('utf-8')) f.write(',') f.write((fdict[authorName]).encode('utf-8')) f.write(',') f.write(area) f.write(',')
) + 1.0 ) authorscoresAdjusted[ (authorName, areaname, year) ] = ( authorscoresAdjusted.get( (authorName, areaname, year), 0 ) + 1.0 / authorsOnPaper ) return (interestingauthors, authorscores, authorscoresAdjusted, authlogs) fdict = csrankings.csv2dict_str_str("faculty-affiliations.csv") (intauthors_gl, authscores_gl, authscoresAdjusted_gl, authlog_gl) = parseDBLP( fdict ) f = open("all-author-info.csv", "w") f.write('"name","dept","area","count","adjustedcount","year"\n') for (authorName, area, year) in authscores_gl: count = authscores_gl[(authorName, area, year)] countAdjusted = authscoresAdjusted_gl[(authorName, area, year)] # f.write(authorName.encode('utf-8')) f.write(authorName) f.write(",") # f.write((fdict[authorName]).encode('utf-8')) f.write((fdict[authorName]))