def update_files():
    input_data = []
    for i in range(1, 6):
        with open(f'in\\{str(i)}.csv', encoding='utf-8', newline='') as f_in:
            for row in csv_read(f_in):
                row.insert(0, companies[i])
                input_data.append(row)
    # generating output data
    output_data = {1: [], 2: [], 3: []}
    for line in input_data:
        if 'производитель 1' in line:
            output_data[1].append(line[:3] + line[4:])
        elif 'производитель 3' in line:
            output_data[2].append(line[:3] + line[4:])
        if 'яблоки' in line:
            output_data[3].append(line[:1] + line[2:])
    for i in range(1, 4):
        with open(f'out\\{str(i)}.csv', 'w', encoding='utf-8',
                  newline='') as f_out:
            csv_write(f_out).writerows(output_data[i])
    return None
Example #2
0
# from sklearn.linear_model import LogisticRegression
# from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
print("Import finished")

parameter_num = 15  # the number of mfcc's parameters
train_pos_num = 100
train_neg_num = 100
test_num = 100
dataset_root = 'D:/dataset'

train_label = np.array([1] * train_pos_num + [0] * train_neg_num)
test_label = [0] * test_num
csv_list_test = csv_read(
    open('D:/dataset/test_result.csv', 'r', encoding='utf-8'))
csv_list_test = list(csv_list_test)[0]
csv_list_test[0] = csv_list_test[0].strip('\ufeff')
for i in range(test_num):
    test_label[i] = int(csv_list_test[i])
test_label = np.array(test_label)

# 1.图像特征向量读取
image_read_flag = 0
image_train_pos_root = './image_feat/train_pos.npy'
image_train_neg_root = './image_feat/train_neg.npy'
image_test_root = './image_feat/test.npy'
if not os_path_exists('./image_feat/'):
    makedirs('./image_feat/')
    image_read_flag = 1
Example #3
0
# import matplotlib.pyplot as plt
# from sklearn.model_selection import train_test_split, learning_curve, validation_curve
from sklearn.preprocessing import StandardScaler, PolynomialFeatures  # , Normalizer
from sklearn.neural_network import MLPClassifier
print("Import finished")

parameter_num = 15  # the number of mfcc's parameters
train_pos_num = 100
train_neg_num = 100
test_num = 100
dataset_root = 'D:/Temp/Matlab/Machine_Learning/dataset'

train_label = np.array([1] * train_pos_num + [0] * train_neg_num)
test_label = [0] * test_num
csv_list_test = csv_read(
    open('D:/Temp/Matlab/Machine_Learning/dataset/test_result.csv',
         'r',
         encoding='utf-8'))
csv_list_test = list(csv_list_test)[0]
csv_list_test[0] = csv_list_test[0].strip('\ufeff')
for i in range(test_num):
    test_label[i] = int(csv_list_test[i])
test_label = np.array(test_label)

# 1.图像特征向量读取
image_read_flag = 0
image_train_pos_root = './image_feat/train_pos.npy'
image_train_neg_root = './image_feat/train_neg.npy'
image_test_root = './image_feat/test.npy'
if not os_path_exists('./image_feat/'):
    makedirs('./image_feat/')
    image_read_flag = 1
Example #4
0
    def csv_write(self, pfadname, delimiter):
        """
        Eine Methode zum Schreiben von CSV-Dateien
        """
        ifile  = open(self.filename) #Oeffnen des vorhandenen Files
        sn = csv.Sniffer()
        dialect = sn.sniff(ifile.read(1024))
        reader = csv.reader(ifile, dialect)

        ofile  = open(pfadname, "w") #Oeffnen des Files, in welches hineingeschrieben werden soll
        writer = csv.writer(ofile, delimiter=delimiter, quotechar='"', quoting=csv.QUOTE_ALL) #Setzen des Writers

        for row in reader:
            writer.writerow(row) #Schreiben in das File

        #Schliessen der beiden Dateien
        ifile.close()
        ofile.close()



if __name__ == "__main__":
    """
    Definition der Main, Aufrufen der Read und Write Methoden
    """
    csv = CSVreader("WahlKopie.csv") #Angeben der Datei
    read = csv.csv_read() #Lesen der Datei
    csv.csv_write("WahlNeu.csv", '\t') #Schreiben in ein neues File
    #print (read) #Ausgeben des Eingelesenen

Example #5
0
from csv import reader as csv_read
import numpy as np
from utils.general_plotting import smooth_histogram
from matplotlib import pyplot as plt
from scipy.stats import ks_2samp
from utils.linalg import moving_average

master_table = []
with open(my_file, 'r') as source:
    reader = csv_read(source)
    header = reader.next()
    for line in reader:
        line = [float(elt) if elt else np.nan for elt in line[1:-3]]
        master_table.append(line)

master_table = np.array(master_table)

D_r = master_table[master_table[:, -1] > 0., 1]
D_nr = master_table[master_table[:, -1] == 0., 1]

GM_r = master_table[master_table[:, -1] > 0., 0]
GM_nr = master_table[master_table[:, -1] == 0., 0]

S_r = master_table[master_table[:, -1] > 0., 2]
S_nr = master_table[master_table[:, -1] == 0., 2]

s_r = master_table[master_table[:, -1] > 0., -2]
s_nr = master_table[master_table[:, -1] == 0., -2]

s_3d_av = moving_average(
    master_table[np.logical_not(np.isnan(master_table[:, -1])), -2], 3)