Example #1
0
def test_read_container(temp_h5_file):
    r0tel1 = R0CameraContainer()
    r0tel2 = R0CameraContainer()
    mc = MCEventContainer()

    reader = HDF5TableReader(str(temp_h5_file))

    # get the generators for each table
    mctab = reader.read('/R0/MC', mc)
    r0tab1 = reader.read('/R0/tel_001', r0tel1)
    r0tab2 = reader.read('/R0/tel_002', r0tel2)

    # read all 3 tables in sync
    for ii in range(3):

        m = next(mctab)
        r0_1 = next(r0tab1)
        r0_2 = next(r0tab2)

        print("MC:", m)
        print("t0:", r0_1.image)
        print("t1:", r0_2.image)
        print("---------------------------")

    assert 'test_attribute' in r0_1.meta
    assert r0_1.meta['date'] == "2020-10-10"

    reader.close()
Example #2
0
def test_read_container(temp_h5_file):
    r0tel1 = R0CameraContainer()
    r0tel2 = R0CameraContainer()
    mc = MCEventContainer()

    with HDF5TableReader(temp_h5_file) as reader:

        # get the generators for each table
        mctab = reader.read("/R0/MC", mc)
        r0tab1 = reader.read("/R0/tel_001", r0tel1)
        r0tab2 = reader.read("/R0/tel_002", r0tel2)

        # read all 3 tables in sync
        for ii in range(3):

            m = next(mctab)
            r0_1 = next(r0tab1)
            r0_2 = next(r0tab2)

            print("MC:", m)
            print("t0:", r0_1.waveform)
            print("t1:", r0_2.waveform)
            print("---------------------------")

        assert "test_attribute" in r0_1.meta
        assert r0_1.meta["date"] == "2020-10-10"
Example #3
0
def test_read_whole_table(temp_h5_file):

    mc = MCEventContainer()

    with HDF5TableReader(temp_h5_file) as reader:

        for cont in reader.read("/R0/MC", mc):
            print(cont)
Example #4
0
def test_read_whole_table(temp_h5_file):

    mc = MCEventContainer()

    reader = HDF5TableReader(str(temp_h5_file))

    for cont in reader.read('/R0/MC', mc):
        print(cont)
Example #5
0
def test_write_container(temp_h5_file):
    r0tel = R0CameraContainer()
    mc = MCEventContainer()
    mc.reset()
    r0tel.waveform = np.random.uniform(size=(50, 10))
    r0tel.image = np.random.uniform(size=50)
    r0tel.num_samples = 10
    r0tel.meta['test_attribute'] = 3.14159
    r0tel.meta['date'] = "2020-10-10"

    writer = HDF5TableWriter(str(temp_h5_file),
                             group_name='R0',
                             filters=tables.Filters(complevel=7))
    writer.exclude("tel_002", ".*samples")  # test exclusion of columns

    for ii in range(100):
        r0tel.waveform[:] = np.random.uniform(size=(50, 10))
        r0tel.image[:] = np.random.uniform(size=50)
        r0tel.num_samples = 10
        mc.energy = 10**np.random.uniform(1, 2) * u.TeV
        mc.core_x = np.random.uniform(-1, 1) * u.m
        mc.core_y = np.random.uniform(-1, 1) * u.m

        writer.write("tel_001", r0tel)
        writer.write("tel_002", r0tel)  # write a second table too
        writer.write("MC", mc)

    writer.close()
Example #6
0
def test_with_context_reader(temp_h5_file):

    mc = MCEventContainer()

    with HDF5TableReader(str(temp_h5_file)) as h5_table:

        assert h5_table._h5file.isopen == True

        for cont in h5_table.read('/R0/MC', mc):
            print(cont)

    assert h5_table._h5file.isopen == False
Example #7
0
def test_with_context_reader(temp_h5_file):

    mc = MCEventContainer()

    with HDF5TableReader(temp_h5_file) as h5_table:

        assert h5_table._h5file.isopen == 1

        for cont in h5_table.read("/R0/MC", mc):
            print(cont)

    assert h5_table._h5file.isopen == 0
Example #8
0
def test_write_container(temp_h5_file):
    r0tel = R0CameraContainer()
    mc = MCEventContainer()
    mc.reset()
    r0tel.adc_samples = np.random.uniform(size=(50, 10))
    r0tel.adc_sums = np.random.uniform(size=50)
    r0tel.num_samples = 10
    r0tel.meta['test_attribute'] = 3.14159
    r0tel.meta['date'] = "2020-10-10"

    writer = HDF5TableWriter(str(temp_h5_file), group_name='R0',
                             filters=tables.Filters(
        complevel=7))
    writer.exclude("tel_002",".*samples")  # test exclusion of columns

    for ii in range(100):
        r0tel.adc_samples[:] = np.random.uniform(size=(50, 10))
        r0tel.adc_sums[:] = np.random.uniform(size=50)
        r0tel.num_samples = 10
        mc.energy = 10**np.random.uniform(1,2) * u.TeV
        mc.core_x = np.random.uniform(-1, 1) * u.m
        mc.core_y = np.random.uniform(-1, 1) * u.m

        writer.write("tel_001", r0tel)
        writer.write("tel_002", r0tel)  # write a second table too
        writer.write("MC", mc)
class ArrayEventContainer(Container):
    container_prefix = ''
    run_id = Field(-1, 'run id')
    array_event_id = Field(-1, 'array event id')
    reco = Field(ReconstructedShowerContainer(),
                 'reconstructed shower container')
    mc = Field(MCEventContainer(), 'array wide MC information')

    total_intensity = Field(np.nan, 'sum of all intensities')

    num_triggered_telescopes = Field(np.nan, 'Number of triggered Telescopes')

    num_triggered_lst = Field(np.nan, 'Number of triggered LSTs')
    num_triggered_mst = Field(np.nan, 'Number of triggered MSTs')
    num_triggered_sst = Field(np.nan, 'Number of triggered SSTs')
Example #10
0
class CalibrationContainer(Container):
    """
    This Container() is used for the camera calibration pipeline.
    It is meant to save each step of the calibration pipeline
    """

    config = Field(list, 'List of the input parameters'
                   ' of the calibration analysis')  # Should use dict?
    pixel_id = Field(ndarray, 'pixel ids')
    data = CalibrationEventContainer()
    event_id = Field(int, 'event_id')
    event_type = Field(CameraEventType, 'Event type')
    hillas = Field(HillasParametersContainer, 'Hillas parameters')
    info = CalibrationContainerMeta()
    slow_data = Field(None, "Slow Data Information")
    mc = Field(MCEventContainer(), "Monte-Carlo data")
Example #11
0
def test_read_container(temp_h5_file):
    r0tel1 = R0CameraContainer()
    r0tel2 = R0CameraContainer()
    mc = MCEventContainer()

    reader = SimpleHDF5TableReader(str(temp_h5_file))

    # get the generators for each table
    mctab = reader.read('/R0/MC', mc)
    r0tab1 = reader.read('/R0/tel_001', r0tel1)
    r0tab2 = reader.read('/R0/tel_002', r0tel2)

    # read all 3 tables in sync
    for ii in range(3):
        print("MC:", next(mctab))
        print("t0:", next(r0tab1).adc_sums)
        print("t1:", next(r0tab2).adc_sums)
        print("---------------------------")
Example #12
0
class DataContainer(Container):
    """ Top-level container for all event information.
    Each field is representing a specific data processing level from (R0 to
    DL2) Please keep in mind that the data level definition and the associated
    fields might change rapidly as there is not a final data format. The data
    levels R0, R1, DL1, contains sub-containers for each telescope.
    After DL2 the data is not processed at the telescope level.
    """
    r0 = Field(R0Container(), "Raw Data")
    r1 = Field(R1Container(), "Raw Common Data")
    dl0 = Field(DL0Container(), "DL0 Data Volume Reduced Data")
    dl1 = Field(DL1Container(), "DL1 Calibrated image")
    dl2 = Field(ReconstructedContainer(), "Reconstructed Shower Information")
    mc = Field(MCEventContainer(), "Monte-Carlo data")
    mcheader = Field(MCHeaderContainer(), "Monte-Carlo run header data")
    inst = Field(InstrumentContainer(), "Instrumental information")
    slow_data = Field(None, "Slow Data Information")
    trig = Field(CentralTriggerContainer(), "central trigger information")
    count = Field(0, "number of events processed")