def GenTasks(tname,step,args): """ generate the tasks args, arguments as a string nnodes, number of nodes tsize, number of nodes per task dis, degree distribution """ d = simplejson.loads(args[0]) nnodes = d["nnodes"] tsize = d["tsize"] dis = d["dis"] ns = 0 tc = 0 while ns < nnodes: tname = "G" + str(tc) tc += 1 ne = ns + tsize if ne > nnodes: ne = nnodes tinfo = "%d\t%d\t%s" % (ns, ne-1, dis) print tname, tinfo ns = ne comm.mroute("T0", tname, tinfo)
def GenTasks(tname, step, args): """ generate the tasks args, arguments as a string nnodes, number of nodes tsize, number of nodes per task dis, degree distribution """ d = simplejson.loads(args[0]) nnodes = d["nnodes"] tsize = d["tsize"] dis = d["dis"] ns = 0 tc = 0 while ns < nnodes: tname = "G" + str(tc) tc += 1 ne = ns + tsize if ne > nnodes: ne = nnodes tinfo = "%d\t%d\t%s" % (ns, ne - 1, dis) print tname, tinfo ns = ne comm.mroute("T0", tname, tinfo)
def GenGraph(tname,step,args): """ generate the graph edges args, arguments as a string """ # extract the stubs from the args # iterate through the input queue and add new items to the stub list stubs = [] for item in args: l = simplejson.loads(item) stubs.extend(l) #print stubs print tname,stubs # randomize the items random.shuffle(stubs) #print tname + "-r",stubs # get the pairs pairs = zip(stubs[::2], stubs[1::2]) print tname,pairs # distribute the stubs randomly to the tasks tsize = comm.mgetconfig("tsize") # get edges for a specific task edges = {} for pair in pairs: esrc = pair[0] edst = pair[1] # add the edge twice for both directions tdst = TaskId(esrc, tsize) if not edges.has_key(tdst): edges[tdst] = [] l = [esrc, edst] edges[tdst].append(l) tdst = TaskId(edst, tsize) if not edges.has_key(tdst): edges[tdst] = [] l = [edst, esrc] edges[tdst].append(l) print tname,edges for key, value in edges.iteritems(): tdst = "E%s" % (str(key)) targs = simplejson.dumps(value) print tdst,targs comm.mroute(tname,tdst,targs)
def GenGraph(tname, step, args): """ generate the graph edges args, arguments as a string """ # extract the stubs from the args # iterate through the input queue and add new items to the stub list stubs = [] for item in args: l = simplejson.loads(item) stubs.extend(l) #print stubs print tname, stubs # randomize the items random.shuffle(stubs) #print tname + "-r",stubs # get the pairs pairs = zip(stubs[::2], stubs[1::2]) print tname, pairs # distribute the stubs randomly to the tasks tsize = comm.mgetconfig("tsize") # get edges for a specific task edges = {} for pair in pairs: esrc = pair[0] edst = pair[1] # add the edge twice for both directions tdst = TaskId(esrc, tsize) if not edges.has_key(tdst): edges[tdst] = [] l = [esrc, edst] edges[tdst].append(l) tdst = TaskId(edst, tsize) if not edges.has_key(tdst): edges[tdst] = [] l = [edst, esrc] edges[tdst].append(l) print tname, edges for key, value in edges.iteritems(): tdst = "E%s" % (str(key)) targs = simplejson.dumps(value) print tdst, targs comm.mroute(tname, tdst, targs)
def GenStubs(tname, step, args): """ determine degrees for all the nodes, generate the stubs and distribute them args, arguments as a string """ argwords = args[0] largs = argwords.split("\t") #print largs ns = int(largs[0]) ne = int(largs[1]) dis = largs[2] print "*task* %s %d %d %d %s" % (tname, step, ns, ne, dis) # determine node degrees i = ns ddeg = {} while i <= ne: deg = StdDist(distmean, distvar) #deg = 3 ddeg[i] = deg print "*task* %s %d, node %s, degree %s" % (tname, step, str(i), str(deg)) i += 1 print ddeg # distribute the stubs randomly to the tasks ntasks = comm.mgetconfig("tasks") print "__tasks__ %s\t%s" % (tname, str(ntasks)) # one item per task, each task has a list of stubs dstubs = {} for key, value in ddeg.iteritems(): for i in range(0, value): t = int(random.random() * ntasks) if not dstubs.has_key(t): dstubs[t] = [] dstubs[t].append(key) for key, value in dstubs.iteritems(): tdst = "S%s" % (str(key)) targs = simplejson.dumps(value) print tdst, targs comm.mroute(tname, tdst, targs)
def GenStubs(tname,step,args): """ determine degrees for all the nodes, generate the stubs and distribute them args, arguments as a string """ argwords = args[0] largs = argwords.split("\t") #print largs ns = int(largs[0]) ne = int(largs[1]) dis = largs[2] print "*task* %s %d %d %d %s" % (tname, step, ns, ne, dis) # determine node degrees i = ns ddeg = {} while i <= ne: deg = StdDist(distmean,distvar) #deg = 3 ddeg[i] = deg print "*task* %s %d, node %s, degree %s" % (tname, step, str(i), str(deg)) i += 1 print ddeg # distribute the stubs randomly to the tasks ntasks = comm.mgetconfig("tasks") print "__tasks__ %s\t%s" % (tname, str(ntasks)) # one item per task, each task has a list of stubs dstubs = {} for key,value in ddeg.iteritems(): for i in range(0,value): t = int(random.random() * ntasks) if not dstubs.has_key(t): dstubs[t] = [] dstubs[t].append(key) for key, value in dstubs.iteritems(): tdst = "S%s" % (str(key)) targs = simplejson.dumps(value) print tdst,targs comm.mroute(tname,tdst,targs)
def GetDist(tname,step,args): """ find the node distance args, arguments as a string """ print "GetDist", tname task = tname tsize = comm.mgetconfig("tsize") # get the initial arguments: starting node and its neighbors dinit = simplejson.loads(args[0]) node = dinit["node"] nbrlist = dinit["nbrs"] # no visited nodes yet, first iteration visited = {} distance = 0 print "*distance*", tname, node, distance visited[node] = distance while True: # process the new neighbors distance += 1 newnodes = [] # process all the input elements for arg in args: dinit = simplejson.loads(arg) srcnode = dinit["node"] nbrlist = dinit["nbrs"] for item in nbrlist: # skip nodes already visited if item in visited: continue # add new nodes to the visited nodes and the new nodes print "*distance*", tname, item, distance visited[item] = distance newnodes.append(item) # done, if there are no more new nodes if len(newnodes) <= 0: break # send new visited nodes to the graph nodes to find their neighbors # collect nodes for the same task dtasks = {} for ndst in newnodes: tn = TaskId(ndst,tsize) if not dtasks.has_key(tn): dtasks[tn] = [] dtasks[tn].append(ndst) print "dtasks", dtasks # send the messages for tn,args in dtasks.iteritems(): dmsg = {} dmsg["task"] = task dmsg["nodes"] = args tdst = "E%s" % (str(tn)) targs = simplejson.dumps(dmsg) print tdst,targs comm.mroute(tname,tdst,targs) # wait for another iteration yield # get the input queue args = comm.mgetargs(tname) # end of while, repeat the loop #print "*finish*", tname, visited dist = {} for key,value in visited.iteritems(): if not dist.has_key(value): dist[value] = [] dist[value].append(key) for key,value in dist.iteritems(): value.sort() #print "*finish1*", tname, dist distance = 0 compsize = 0 while dist.has_key(distance): print "*dist*", distance, len(dist[distance]) #print "*dist*", distance, len(dist[distance]), dist[distance] compsize += len(dist[distance]) distance += 1 print "*distall*", distance, compsize return
def GenNbr(tname,step,args): """ generate the graph neighbors args, arguments as a string """ task = tname # extract neighbors from the args # iterate through the input queue and add new items to the neighbor list edges = [] for item in args: l = simplejson.loads(item) edges.extend(l) print edges print tname,edges # collect neighbors for each node nbrs = {} for item in edges: src = item[0] dst = item[1] if not nbrs.has_key(src): nbrs[src] = set() nbrs[src].add(dst) for node, edges in nbrs.iteritems(): print tname, node, edges # select a random node for stats #nsel = random.choice(list(nbrs.keys())) nsel = list(nbrs.keys())[0] print tname, "sel", nsel, list(nbrs.keys()) # send the node and its neighbors to the distance task tdst = "D%s" % (str(nsel)) dmsg = {} dmsg["node"] = nsel dmsg["nbrs"] = list(nbrs[nsel]) targs = simplejson.dumps(dmsg) print tdst,targs comm.mroute(tname,tdst,targs) while True: yield args = comm.mgetargs(tname) if args == None: continue # iterate through the input queue, get the nodes, report neighbors for item in args: d = simplejson.loads(item) tdst = d["task"] nodes = d["nodes"] for node in nodes: dmsg = {} dmsg["node"] = node dmsg["nbrs"] = list(nbrs[node]) targs = simplejson.dumps(dmsg) #tdst = "D%s" % (str(node)) print tdst,targs comm.mroute(tname,tdst,targs)
d = {} d["type"] = "iter" d["def" ] = GetDist dispatch["D"] = d comm.msetdispatch(dispatch) d = {} d["nnodes"] = nnodes d["tsize"] = tsize d["dis"] = "std" targs = simplejson.dumps(d) #random.seed(0) comm.mroute("00","T0",targs) # generate the tasks and assign nodes to them #GenTasks(nnodes, tsize, "std") comm.mexec() # generate node degrees and distribute stubs to tasks #comm.mexec(GenStubs) comm.mexec() # generate the random graph #comm.mexec(GenGraph) comm.mexec() # generate the graph statistics #comm.mexec(GenNbr)
def GetDist(tname, step, args): """ find the node distance args, arguments as a string """ print "GetDist", tname task = tname tsize = comm.mgetconfig("tsize") # get the initial arguments: starting node and its neighbors dinit = simplejson.loads(args[0]) node = dinit["node"] nbrlist = dinit["nbrs"] # no visited nodes yet, first iteration visited = {} distance = 0 print "*distance*", tname, node, distance visited[node] = distance while True: # process the new neighbors distance += 1 newnodes = [] # process all the input elements for arg in args: dinit = simplejson.loads(arg) srcnode = dinit["node"] nbrlist = dinit["nbrs"] for item in nbrlist: # skip nodes already visited if item in visited: continue # add new nodes to the visited nodes and the new nodes print "*distance*", tname, item, distance visited[item] = distance newnodes.append(item) # done, if there are no more new nodes if len(newnodes) <= 0: break # send new visited nodes to the graph nodes to find their neighbors # collect nodes for the same task dtasks = {} for ndst in newnodes: tn = TaskId(ndst, tsize) if not dtasks.has_key(tn): dtasks[tn] = [] dtasks[tn].append(ndst) print "dtasks", dtasks # send the messages for tn, args in dtasks.iteritems(): dmsg = {} dmsg["task"] = task dmsg["nodes"] = args tdst = "E%s" % (str(tn)) targs = simplejson.dumps(dmsg) print tdst, targs comm.mroute(tname, tdst, targs) # wait for another iteration yield # get the input queue args = comm.mgetargs(tname) # end of while, repeat the loop #print "*finish*", tname, visited dist = {} for key, value in visited.iteritems(): if not dist.has_key(value): dist[value] = [] dist[value].append(key) for key, value in dist.iteritems(): value.sort() #print "*finish1*", tname, dist distance = 0 compsize = 0 while dist.has_key(distance): print "*dist*", distance, len(dist[distance]) #print "*dist*", distance, len(dist[distance]), dist[distance] compsize += len(dist[distance]) distance += 1 print "*distall*", distance, compsize return
def GenNbr(tname, step, args): """ generate the graph neighbors args, arguments as a string """ task = tname # extract neighbors from the args # iterate through the input queue and add new items to the neighbor list edges = [] for item in args: l = simplejson.loads(item) edges.extend(l) print edges print tname, edges # collect neighbors for each node nbrs = {} for item in edges: src = item[0] dst = item[1] if not nbrs.has_key(src): nbrs[src] = set() nbrs[src].add(dst) for node, edges in nbrs.iteritems(): print tname, node, edges # select a random node for stats #nsel = random.choice(list(nbrs.keys())) nsel = list(nbrs.keys())[0] print tname, "sel", nsel, list(nbrs.keys()) # send the node and its neighbors to the distance task tdst = "D%s" % (str(nsel)) dmsg = {} dmsg["node"] = nsel dmsg["nbrs"] = list(nbrs[nsel]) targs = simplejson.dumps(dmsg) print tdst, targs comm.mroute(tname, tdst, targs) while True: yield args = comm.mgetargs(tname) if args == None: continue # iterate through the input queue, get the nodes, report neighbors for item in args: d = simplejson.loads(item) tdst = d["task"] nodes = d["nodes"] for node in nodes: dmsg = {} dmsg["node"] = node dmsg["nbrs"] = list(nbrs[node]) targs = simplejson.dumps(dmsg) #tdst = "D%s" % (str(node)) print tdst, targs comm.mroute(tname, tdst, targs)
d = {} d["type"] = "iter" d["def"] = GetDist dispatch["D"] = d comm.msetdispatch(dispatch) d = {} d["nnodes"] = nnodes d["tsize"] = tsize d["dis"] = "std" targs = simplejson.dumps(d) #random.seed(0) comm.mroute("00", "T0", targs) # generate the tasks and assign nodes to them #GenTasks(nnodes, tsize, "std") comm.mexec() # generate node degrees and distribute stubs to tasks #comm.mexec(GenStubs) comm.mexec() # generate the random graph #comm.mexec(GenGraph) comm.mexec() # generate the graph statistics #comm.mexec(GenNbr)