ntimes=int( 1 + np.around((etime-itime).seconds / delta.seconds) ) #Total number of times. ctl_file = basedir + '/' + my_exp + '/ctl/update_mean_diff.ctl' outputdir=basedir + '/' + my_exp + '/time_mean/' + filetype + '/' if not os.path.exists( outputdir) : os.makedirs( outputdir ) #========================================================= # READ CTL FILE #========================================================= ctl_dict = ctlr.read_ctl( ctl_file ) nx=ctl_dict['nx'] ny=ctl_dict['nx'] nlev=len( ctl_dict['full_lev_list'] ) nt=int(1) #Force the number of times to be one. ctl_dict['nt']=int(1) #Force the number of times to be one. undef=np.float32( ctl_dict['undef'] ) if ctl_dict['big_endian'] : dtypein = '>f4' endian='big_endian' else : dtypein = 'f4' endian='little_endian'
delta = dt.timedelta(seconds=deltat[iexp]) #Compute the total number of times ntimes = int(1 + np.around( (etime - itime).seconds / delta.seconds)) #Total number of times. #========================================================= # READ CTL FILE #========================================================= if iexp == 0: ctl_file = basedir + '/' + my_exp + '/ctl/update_mean_diff.ctl' ctl_dict = ctlr.read_ctl(ctl_file) nx = ctl_dict['nx'] ny = ctl_dict['nx'] nlev = ctl_dict['nz'] nt = int(1) #Force the number of times to be one. ctl_dict['nt'] = int(1) #Force the number of times to be one. undef = np.float32(ctl_dict['undef']) ctl_file_2 = basedir + '/' + my_exp + '/ctl/guesgp.ctl' ctl_dict_2 = ctlr.read_ctl(ctl_file_2) #========================================================= # READ LAT LON
basedir = '/home/ra001011/a03471/data/output_data/' exps = ['LE_D1_1km_5min'] lat_radar = 34.823 lon_radar = 135.523 radar_range = 60.0e3 #Radar range in meters (to define the radar mask) #========================================================= # READ LAT LON #========================================================= latlon_file = basedir + '/LE_D1_1km_5min/latlon/latlon.grd' latlon_ctl = basedir + '/LE_D1_1km_5min/latlon/latlon.ctl' ctl_dict = ctlr.read_ctl(latlon_ctl) my_data = ctlr.read_data_grads(latlon_file, ctl=ctl_dict) lon = np.squeeze(my_data['glon']) lat = np.squeeze(my_data['glat']) topo = np.squeeze(my_data['topo']) #Exclude areas outside the radar domain. radar_mask = cmf.distance_range_mask(lon_radar, lat_radar, radar_range, lon, lat) #========================================================================================= #Plot the mean topography and PAWR radar range #=========================================================================================
obs_increment = [5.0, 5.0, 5.0, 5.0, 2.0, 2.0, 2.0, 2.0] obs_error = [5.0, 5.0, 5.0, 5.0, 2.0, 2.0, 2.0, 2.0] nbv = 1000 sigma_smooth = 2.0 #========================================================= # LOOP OVER FILE TYPES #========================================================= profile_mean_rmsd = dict() profile_mean_rmsu = dict() profile_kld = dict() ctl_dict = ctlr.read_ctl(basedir + '/LE_D1_1km_5min/ctl/moment0001_for.ctl') for iexp, my_exp in enumerate(exps): profile_mean_rmsd[my_exp] = [] profile_mean_rmsu[my_exp] = [] profile_kld[my_exp] = [] #========================================================= # READ THE DATA #========================================================= for iv, my_obs_inc in enumerate(obs_increment): var_obs = variable_combination[0][iv] var_upd = variable_combination[1][iv]
#========================================================= # PLOT MODEL DOMAIN #========================================================= lat_radar = 34.823 lon_radar = 135.523 radar_range = 60.0e3 #Radar range in meters (to define the radar mask) #========================================================= # READ LAT LON AND TOPO #========================================================= latlon_file = basedir + '/LE_D1_1km_5min/latlon/latlon.grd' latlon_ctl = basedir + '/LE_D1_1km_5min/latlon/latlon.ctl' ctl_dict = ctlr.read_ctl(latlon_ctl) my_data = ctlr.read_data_grads(latlon_file, ctl=ctl_dict) lon = np.squeeze(my_data['glon']) lat = np.squeeze(my_data['glat']) topo = np.squeeze(my_data['topo']) #Exclude areas outside the radar domain. radar_mask = cmf.distance_range_mask(lon_radar, lat_radar, radar_range, lon, lat) #========================================================================================= #Plot the mean topography and PAWR radar range #=========================================================================================