def tokenize_and_abstract( self, source_code): """Produces a language-agnostic tokenization of the input code.""" token_pairs = [] # type: List[Tuple[Text, int]] try: token_tuples = unified_tokenizer.code_to_tokens(source_code) token_pairs = [(six.ensure_text(token_name), token_type) for token_type, token_name, _, _, _ in token_tuples] except (tokenize.TokenError, IndentationError) as e: logging.warning('The tokenizer raised exception `%s` while parsing %s', e, source_code) token_pairs = [ (cubert_tokenizer.quote_special( unified_tokenizer.TokenKind.ERROR.name), tokenize.ERRORTOKEN), ('', tokenize.ENDMARKER), ] agnostic_tokens = [] # type: List[Tuple[Text, unified_tokenizer.TokenKind]] for spelling, kind in token_pairs: adjusted_spelling = spelling token_kind = unified_tokenizer.TokenKind.NONE if kind == tokenize.NAME: # Disambiguate identifiers from keywords. if keyword.iskeyword(spelling): token_kind = unified_tokenizer.TokenKind.KEYWORD else: token_kind = unified_tokenizer.TokenKind.IDENTIFIER else: if kind in PythonTokenizer._TOKEN_TYPES_TO_TOKENIZE_BY_TYPE: # Replace spelling with type. adjusted_spelling = cubert_tokenizer.token_from_token_type(kind) elif kind is tokenize.INDENT: # For INDENT, in particular, we also record the actual spelling too. adjusted_spelling = '{indent}{spelling}'.format( indent=cubert_tokenizer.token_from_token_type(kind), spelling=spelling) elif kind == tokenize.ENDMARKER: adjusted_spelling = cubert_tokenizer.quote_special( unified_tokenizer.TokenKind.EOS.name) # Map everything according to table. try: token_kind = PythonTokenizer._TOKEN_TYPE_MAP[kind] except KeyError as ke: # It's possible we're here because of async/await. Those kept being # turned into keywords and then removed from keywords, so we can't # rely on knowing which they are. We'll check by spelling. # See: https://bugs.python.org/issue30406 # and https://bugs.python.org/issue33260 # and https://bugs.python.org/issue35975 if spelling in ('async', 'await'): token_kind = unified_tokenizer.TokenKind.KEYWORD else: raise ValueError('While trying to turn Python token %r into an ' 'agnostic one, raised %r.' % ((spelling, kind), ke)) agnostic_tokens.append((adjusted_spelling, token_kind)) return agnostic_tokens
def tokenize_and_abstract( self, source_code): """Produces a language-agnostic tokenization of the input code.""" agnostic_tokens: List[unified_tokenizer.AbstractToken] = [] try: token_tuples = unified_tokenizer.code_to_tokens(source_code) except (tokenize.TokenError, IndentationError) as e: logging.warning('The tokenizer raised exception `%s` while parsing %s', e, source_code) # We don't try to do recovery from errors quite yet. Emit just an # error and end-of-sequence and return. agnostic_tokens.append( unified_tokenizer.AbstractToken( unified_tokenizer.quote_special( unified_tokenizer.TokenKind.ERROR.name), unified_tokenizer.TokenKind.ERROR, unified_tokenizer.TokenMetadata( start=unified_tokenizer.Position( line=0, column=0), end=unified_tokenizer.Position( line=0, column=0)))) agnostic_tokens.append( unified_tokenizer.AbstractToken( unified_tokenizer.quote_special( unified_tokenizer.TokenKind.EOS.name), unified_tokenizer.TokenKind.EOS, unified_tokenizer.TokenMetadata( start=unified_tokenizer.Position( line=0, column=0), end=unified_tokenizer.Position( line=0, column=0)))) return agnostic_tokens for token_tuple in token_tuples: spelling = token_tuple.string kind = token_tuple.type # We'll adjust the spelling of some tokens, e.g., those that we # tokenize by their type rather than their original spelling. Indentation # and dedentation tokens are like that. adjusted_spelling = spelling token_kind = unified_tokenizer.TokenKind.NONE if kind == tokenize.NAME: # Disambiguate identifiers from keywords. if keyword.iskeyword(spelling): token_kind = unified_tokenizer.TokenKind.KEYWORD else: token_kind = unified_tokenizer.TokenKind.IDENTIFIER else: if kind in PythonTokenizer._TOKEN_TYPES_TO_TOKENIZE_BY_TYPE: # Replace spelling with type. adjusted_spelling = cubert_tokenizer.token_from_token_type(kind) elif kind is tokenize.INDENT: # For INDENT, in particular, we also record the actual spelling too. adjusted_spelling = '{indent}{spelling}'.format( indent=cubert_tokenizer.token_from_token_type(kind), spelling=spelling) elif kind == tokenize.ENDMARKER: adjusted_spelling = unified_tokenizer.quote_special( unified_tokenizer.TokenKind.EOS.name) # Map everything according to table. try: token_kind = PythonTokenizer._TOKEN_TYPE_MAP[kind] except KeyError as ke: # It's possible we're here because of async/await. Those kept being # turned into keywords and then removed from keywords, so we can't # rely on knowing which they are. We'll check by spelling. # See: https://bugs.python.org/issue30406 # and https://bugs.python.org/issue33260 # and https://bugs.python.org/issue35975 if spelling in ('async', 'await'): token_kind = unified_tokenizer.TokenKind.KEYWORD else: raise ValueError('While trying to turn Python token %r into an ' 'agnostic one, raised %r.' % ((spelling, kind), ke)) start_line, start_column = token_tuple.start end_line, end_column = token_tuple.end # Unlike other languages, NEWLINE tokens are reported as ending on the # same line as where they started. We adjust that here, to stick to the # same convention as other tokenizers. if ((token_kind == unified_tokenizer.TokenKind.NEWLINE) or (kind == tokenize.NL)): end_line = start_line + 1 end_column = 0 agnostic_tokens.append( unified_tokenizer.AbstractToken( spelling=adjusted_spelling, kind=token_kind, metadata=unified_tokenizer.TokenMetadata( # Python's tokenizer counts lines starting from 1, so we # have to offset what we read from the `TokenInfo` tuple. start=unified_tokenizer.Position( line=start_line - 1, column=start_column), end=unified_tokenizer.Position( line=end_line - 1, column=end_column)))) return agnostic_tokens