Example #1
0
def create_movies():
    engine = create_engine('sqlite:///data.sqlite')
    create_table_from_csv(engine,
                          "sample_movies.csv",
                          table_name="movies",
                          fields=[("id", "integer"), ("title", "string"),
                                  ("genres", "string")],
                          create_id=False)
Example #2
0
def create_ratings():
    engine = create_engine('sqlite:///data.sqlite')
    create_table_from_csv(engine,
                          "syntetic_ratings.csv",
                          table_name="ratings",
                          fields=[("user_id", "integer"),
                                  ("item_id", "integer"), ("rating", "float"),
                                  ("time", "integer")],
                          create_id=False)
Example #3
0
#
# Create a tutorial directory and download the file:

# 1. Prepare SQL data in memory

logger = logging.getLogger("cubes")
logger.setLevel(logging.WARN)

FACT_TABLE = "irbd_balance"

engine = sqlalchemy.create_engine('sqlite:///:memory:')
tutorial.create_table_from_csv(engine,
                               "data/IBRD_Balance_Sheet__FY2010-t02.csv",
                               table_name=FACT_TABLE,
                               fields=[("category", "string"),
                                       ("subcategory", "string"),
                                       ("line_item", "string"),
                                       ("year", "integer"),
                                       ("amount", "integer")],
                               create_id=True)

# 2. Load model and get cube of our interest

model = cubes.load_model("models/model_02.json")
cube = model.cube("irbd_balance")

# 3. Create a browser

workspace = cubes.create_workspace("sql.star", model, engine=engine)
browser = workspace.browser(cube)
Example #4
0
from cubes.tutorial.sql import create_table_from_csv
from sqlalchemy import create_engine
import sys

# Setting encoding to UTF-8
reload(sys)
sys.setdefaultencoding('utf8')

# FACT table name
FACT_TABLE = "restaurant_details"
print("preparing data...")
engine = create_engine('sqlite:///restaurant.sqlite')

# Creating fact table from restaurant_details.csv
create_table_from_csv(engine,
                      "./restaurant_details.csv",
                      table_name=FACT_TABLE,
                      fields=[("id", "integer"),
                              ("number_of_reviews", "integer"),
                              ("price_range", "float"),
                              ("ratingValue", "float"), ("name", "string"),
                              ("street", "string"), ("city", "string"),
                              ("state", "string"), ("zipcode", "integer")])

print("restaurant.sqlite created")
Example #5
0
import sqlalchemy
import cubes
import cubes.tutorial.sql as tutorial

# 1. Prepare SQL data in memory

engine = sqlalchemy.create_engine("sqlite:///:memory:")
tutorial.create_table_from_csv(
    engine,
    "data/IBRD_Balance_Sheet__FY2010.csv",
    table_name="irbd_balance",
    fields=[("category", "string"), ("line_item", "string"), ("year", "integer"), ("amount", "integer")],
    create_id=True,
)

# 2. Create a model

model = cubes.Model()

# 3. Add dimensions to the model. Reason for having dimensions in a model is, that they
#    might be shared by multiple cubes.

model.add_dimension(cubes.Dimension("category"))
model.add_dimension(cubes.Dimension("line_item"))
model.add_dimension(cubes.Dimension("year"))

# 3. Define a cube and specify already defined dimensions

cube = cubes.Cube(name="irbd_balance", model=model, dimensions=["category", "line_item", "year"], measures=["amount"])

# 4. Create a browser and get a cell representing the whole cube (all data)
Example #6
0
# -*- coding: utf-8 -*-
# Data preparation
from __future__ import print_function

from sqlalchemy import create_engine
from cubes.tutorial.sql import create_table_from_csv

# 1. Prepare SQL data in memory

print("preparing data...")

engine = create_engine('sqlite:///personal_finance.sqlite')

create_table_from_csv(engine,
                      "personal_finance.csv",
                      table_name="personal_finance",
                      fields=[
                            ("type", "string"),
                            ("amount", "integer"),
                            ("time", "integer")],
                      create_id=True
                  )

print("csv to sqlite, ok")
engine = create_engine('sqlite:///data.sqlite')
if sys.argv[2] != "0":
    create_flag = True
else:
    create_flag = False
create_table_from_csv(engine,
                      sys.argv[1],
                      table_name=FACT_TABLE,
                      fields=[
                                ("EventID","integer"),
                                ("EventType","string"),
                                ("RegionType","string"),
                                ("Region","string"),
                                ("Fulltime","string"),
                                ("Date","date"),
                                ("Year","integer"),
                                ("Month","integer"),
                                ("Day","integer"),
                                ("Time","date"),
                                ("Latitude","float"),
                                ("Longitude","float"),
                                ("Depth","float"),
                                ("Magnitude","float"),
                                ("MagnitudeUnit","string")],
                     create_id=True,
                     create_table=create_flag
                  )

print("done. file data.sqlite created")
Example #8
0
from sqlalchemy import create_engine
from cubes.tutorial.sql import create_table_from_csv
import sys
# 1. Prepare SQL data in memory

FACT_TABLE = "quake_events"

print("preparing data...")

engine = create_engine('sqlite:///data.sqlite')
if sys.argv[2] != "0":
    create_flag = True
else:
    create_flag = False
create_table_from_csv(engine,
                      sys.argv[1],
                      table_name=FACT_TABLE,
                      fields=[("EventID", "integer"), ("EventType", "string"),
                              ("RegionType", "string"), ("Region", "string"),
                              ("Fulltime", "string"), ("Date", "date"),
                              ("Year", "integer"), ("Month", "integer"),
                              ("Day", "integer"), ("Time", "date"),
                              ("Latitude", "float"), ("Longitude", "float"),
                              ("Depth", "float"), ("Magnitude", "float"),
                              ("MagnitudeUnit", "string")],
                      create_id=True,
                      create_table=create_flag)

print("done. file data.sqlite created")
Example #9
0
from cubes.tutorial.sql import create_table_from_csv

engine = create_engine('sqlite:///data.sqlite')
create_table_from_csv(engine,
                      "E_merge.csv",
                      table_name="restaurants",
                      fields=[("id", "integer"), ("name", "string"),
                              ("city", "string"), ("zipcode", "string"),
                              ("address", "string"), ("phone", "string"),
                              ("category", "string"),
                              ("category_loc", "string"),
                              ("category_food", "string"), ("price", "float"),
                              ("rating", "float"), ("review_count", "integer"),
                              ("hours_sun_open", "string"),
                              ("hours_sun_close", "string"),
                              ("hours_mon_open", "string"),
                              ("hours_mon_close", "string"),
                              ("hours_tue_open", "string"),
                              ("hours_tue_close", "string"),
                              ("hours_wed_open", "string"),
                              ("hours_wed_close", "string"),
                              ("hours_thu_open", "string"),
                              ("hours_thu_close", "string"),
                              ("hours_fri_open", "string"),
                              ("hours_fri_close", "string"),
                              ("hours_sat_open", "string"),
                              ("hours_sat_close", "string")],
                      create_id=False)

from cubes import Workspace
from cubes import PointCut
# Preparacion de la Data a utilizar en el ejemplo

from sqlalchemy import create_engine
from cubes.tutorial.sql import create_table_from_csv

# 1. Preparando la data SQL en memoria

FACT_TABLE = "fact_ventas"

print "[fact_ventas][INICIO] Preparacion de Datos..."

engine = create_engine('sqlite:///data.sqlite')

create_table_from_csv(engine,
                      "fact_ventas.csv",
                      table_name=FACT_TABLE,
                      fields=[("vendedor", "string"),
                              ("cliente", "string"),
                              ("indicador", "string"),
                              ("valor", "integer"),
                              ("fecha", "date"),
                              ("tipo", "string")],
                      create_id=True
                      )

print "[fact_ventas][FIN] archivo data.sqlite creado"
Example #11
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018/9/14 下午11:35
# @Author  : maidou
# @Site    : 
# @File    : test.py
# @Software: PyCharm

from cubes.tutorial.sql import create_table_from_csv
from sqlalchemy import create_engine

engine = create_engine('sqlite:///data.sqlite')
create_table_from_csv(engine,
                      "IBRD_Balance_Sheet__FY2010.csv",
                      table_name="ibrd_balance",
fields=[
("category", "string"),
("category_label", "string"),
("subcategory", "string"),
("subcategory_label", "string"),
("line_item", "string"),
("year", "integer"),
("amount", "integer")],
create_id=True
)
# driver, circuits, races, constructors, status, result

from sqlalchemy import create_engine
from cubes.tutorial.sql import create_table_from_csv

ENGINE = create_engine('sqlite:///data_sqlite/f1.sqlite')

TABLE_NAME = 'drivers'
PATH_TO_CSV = 'data_csv/drivers.csv'

create_table_from_csv(ENGINE,
                      PATH_TO_CSV,
                      table_name=TABLE_NAME,
                      fields=[('driver_id', 'integer'),
                              ('driver_ref', 'string'), ('number', 'integer'),
                              ('code', 'string'), ('forename', 'string'),
                              ('surname', 'string'), ('dob', 'date'),
                              ('nationality', 'string'), ('url', 'string')],
                      create_id=True)
'''TABLE_NAME = 'qualifying'
PATH_TO_CSV = 'data_csv/qualifying.csv'

create_table_from_csv(ENGINE,
                      PATH_TO_CSV,
                      table_name=TABLE_NAME,
                      fields=[
                            ('qualify_id', 'integer'),
                            ('race_id', 'integer'),
                            ('driver_id', 'integer'),
                            ('constructor_id', 'integer'),
                            ('number', 'integer'),
from sqlalchemy import create_engine
from cubes.tutorial.sql import create_table_from_csv

engine = create_engine('sqlite:///world_cup.sqlite')

print("...wait (about 3 minutes)")

create_table_from_csv(engine,
                      "WC18.csv",
                      table_name="players",
                      fields=[("name", "string"), ("nat_team", "string"),
                              ("club", "string"), ("league", "string"),
                              ("pos", "string"), ("role", "string"),
                              ("age_gr", "string"), ("age_ex", "string"),
                              ("matches", "integer"), ("goals", "integer"),
                              ("assists", "integer"), ("ycards", "integer"),
                              ("rcards", "integer"), ("minutes", "integer"),
                              ("n-caps", "integer"), ("n-goals", "integer")],
                      create_id=True)
Example #14
0
create_table_from_csv(engine,
                      "data.csv",
                      table_name=FACT_TABLE,
                      fields=[
                            ("state_code", "integer"),
                            ("county_code", "integer"),
                            ("site_num", "integer"),
                            ("parameter_code", "integer"),
                            ("poc", "integer"),
                            ("datum", "string"),
                            ("parameter_name", "string"),
                            ("sample_duration", "string"),
                            ("pollutant_standard", "string"),
                            ("metric_used", "string"),
                            ("method_name", "string"),
                            ("year", "integer"),
                            ("measure_unit", "string"),
                            ("event_type", "string"),
                            ("observation_count", "integer"),
                            ("observation_percent1", "integer"),
                            ("valid_day_count", "integer"),
                            ("required_day_count", "integer"),
                            ("exceptional_data_count", "integer"),
                            ("null_data_count", "integer"),
                            ("primary_exceedence_count", "integer"),
                            ("secondary_exceedence_count", "integer"),
                            ("certification_indicator", "string"),
                            ("num_obs_below_mdl", "integer"),
                            ("arithmetic_mean", "float"),
                            ("arithmetic_stdev", "float"),
                            ("max1", "float"),
                            ("max1_datetime", "text"),
                            ("max2", "float"),
                            ("max2_datetime", "text"),
                            ("max3", "float"),
                            ("max3_datetime", "text"),
                            ("max4", "float"),
                            ("max4_datetime", "text"),
                            ("max1_non_overlapping", "integer"),
                            ("max1_non_overlapping_datetime", "text"),
                            ("max2_non_overlapping", "integer"),
                            ("max2_non_overlapping_datetime", "text"),
                            ("percentile_99", "float"),
                            ("percentile_98", "float"),
                            ("percentile_95", "float"),
                            ("percentile_90", "float"),
                            ("percentile_75", "float"),
                            ("percentile_50", "float"),
                            ("percentile_10", "float"),
                            ("local_site", "string"),
                            ("state", "string"),
                            ("county_name", "string"),
                            ("city", "string"),
                            ("cbsa_name", "string"),
                            ("date_of_last_change", "text"),
                            ("subarea", "string")],
                      create_id=True
                  )
Example #15
0
# Create a tutorial directory and download the file:

# 1. Prepare SQL data in memory

logger = logging.getLogger("cubes")
logger.setLevel(logging.WARN)

FACT_TABLE = "irbd_balance"

engine = sqlalchemy.create_engine('sqlite:///:memory:')
tutorial.create_table_from_csv(engine, 
                      "data/IBRD_Balance_Sheet__FY2010-t02.csv", 
                      table_name=FACT_TABLE, 
                      fields=[
                            ("category", "string"), 
                            ("subcategory", "string"), 
                            ("line_item", "string"),
                            ("year", "integer"), 
                            ("amount", "integer")],
                      create_id=True    
                    )

# 2. Load model and get cube of our interest

model = cubes.load_model("models/model_02.json")
cube = model.cube("irbd_balance")

# 3. Create a browser

workspace = cubes.create_workspace("sql.star", model, engine=engine)
browser = workspace.browser(cube)
Example #16
0
logger = logging.getLogger("cubes")
logger.setLevel(logging.WARN)

FACT_TABLE = "ft_irbd_balance"
FACT_VIEW = "vft_irbd_balance"

print "loading data..."

engine = sqlalchemy.create_engine('sqlite:///data.sqlite')
tutorial.create_table_from_csv(engine, 
                      "data.csv", 
                      table_name=FACT_TABLE, 
                      fields=[
                            ("category", "string"),
                            ("category_label", "string"), 
                            ("subcategory", "string"), 
                            ("subcategory_label", "string"), 
                            ("line_item", "string"),
                            ("year", "integer"), 
                            ("amount", "integer")],
                      create_id=True    
                        
                        )

model = cubes.load_model("model.json")

cube = model.cube("irbd_balance")
cube.fact = FACT_TABLE

# 2. Create the view (required for the default backend)

print "creating view '%s'..." % FACT_VIEW
logger = logging.getLogger("cubes")
logger.setLevel(logging.WARN)

FACT_TABLE = "ft_iris"
FACT_VIEW = "vft_iris"

print "loading data..."

engine = sqlalchemy.create_engine("sqlite:///data.sqlite")
tutorial.create_table_from_csv(
    engine,
    "iris.csv",
    table_name=FACT_TABLE,
    fields=[
        ("iris_id", "integer"),
        ("sepal_length", "string"),
        ("sepal_width", "string"),
        ("petal_length", "string"),
        ("petal_width", "string"),
        ("species", "string"),
    ],
    create_id=True,
)

model = cubes.load_model("model.json")

cube = model.cube("iris")
cube.fact = FACT_TABLE

# 2. Create the view (required for the default backend)

print "creating view '%s'..." % FACT_VIEW