def func_fit(sessionId, n_clusters, max_iter, tol, verbose, random_state, precompute_distances, init, n_init, algorithm, dfs, r): """ Runs on each worker to call fit on local KMeans instance. Extracts centroids :param model: Local KMeans instance :param dfs: List of cudf.Dataframes to use :param r: Stops memoizatiion caching :return: The fit model """ try: from cuml.cluster.kmeans_mg import KMeansMG as cumlKMeans except ImportError: raise Exception("cuML has not been built with multiGPU support " "enabled. Build with the --multigpu flag to" " enable multiGPU support.") handle = worker_state(sessionId)["handle"] df = concat(dfs) return cumlKMeans(handle=handle, init=init, max_iter=max_iter, tol=tol, random_state=random_state, n_init=n_init, algorithm=algorithm, precompute_distances=precompute_distances, n_clusters=n_clusters, verbose=verbose).fit(df)
def _func_fit(sessionId, objs, datatype, **kwargs): from cuml.cluster.kmeans_mg import KMeansMG as cumlKMeans handle = worker_state(sessionId)["handle"] inp_data = concatenate(objs) return cumlKMeans(handle=handle, output_type=datatype, **kwargs).fit(inp_data)
def _func_fit(sessionId, objs, datatype, has_weights, **kwargs): from cuml.cluster.kmeans_mg import KMeansMG as cumlKMeans handle = get_raft_comm_state(sessionId)["handle"] if not has_weights: inp_data = concatenate(objs) inp_weights = None else: inp_data = concatenate([X for X, weights in objs]) inp_weights = concatenate([weights for X, weights in objs]) return cumlKMeans(handle=handle, output_type=datatype, **kwargs).fit(inp_data, sample_weight=inp_weights)
def _func_fit(sessionId, dfs, **kwargs): """ Runs on each worker to call fit on local KMeans instance. Extracts centroids :param model: Local KMeans instance :param dfs: List of cudf.Dataframes to use :param r: Stops memoization caching :return: The fit model """ try: from cuml.cluster.kmeans_mg import KMeansMG as cumlKMeans except ImportError: raise_mg_import_exception() handle = worker_state(sessionId)["handle"] df = concat(dfs) return cumlKMeans(handle=handle, **kwargs).fit(df)
def func_fit(sessionId, dfs, **kwargs): """ Runs on each worker to call fit on local KMeans instance. Extracts centroids :param model: Local KMeans instance :param dfs: List of cudf.Dataframes to use :param r: Stops memoizatiion caching :return: The fit model """ try: from cuml.cluster.kmeans_mg import KMeansMG as cumlKMeans except ImportError: raise Exception("cuML has not been built with multiGPU support " "enabled. Build with the --multigpu flag to" " enable multiGPU support.") handle = worker_state(sessionId)["handle"] df = concat(dfs) return cumlKMeans(handle=handle, **kwargs).fit(df)