Example #1
0
    def check(self, device_id):
        size = 24
        shape = (2, 3)
        dtype = cupy.float32
        with device.Device(device_id):
            src_mem_ptr = self.allocator(size)
        src_ptr = src_mem_ptr.ptr

        args = (src_ptr, size, src_mem_ptr)
        kwargs = {}
        if self.specify_device_id:
            kwargs = {'device_id': device_id}

        unowned_mem = memory.UnownedMemory(*args, **kwargs)
        assert unowned_mem.size == size
        assert unowned_mem.ptr == src_ptr
        assert unowned_mem.device_id == device_id

        arr = cupy.ndarray(shape, dtype, memory.MemoryPointer(unowned_mem, 0))

        # Delete the source object
        del src_mem_ptr

        with device.Device(device_id):
            arr[:] = 2
            assert (arr == 2).all()
Example #2
0
    def check(self, device_id):
        if (cupy.cuda.runtime.is_hip
                and self.allocator is memory.malloc_managed):
            raise unittest.SkipTest('HIP does not support managed memory')

        size = 24
        shape = (2, 3)
        dtype = cupy.float32
        with device.Device(device_id):
            src_mem_ptr = self.allocator(size)
        src_ptr = src_mem_ptr.ptr

        args = (src_ptr, size, src_mem_ptr)
        kwargs = {}
        if self.specify_device_id:
            kwargs = {'device_id': device_id}

        unowned_mem = memory.UnownedMemory(*args, **kwargs)
        assert unowned_mem.size == size
        assert unowned_mem.ptr == src_ptr
        assert unowned_mem.device_id == device_id

        arr = cupy.ndarray(shape, dtype, memory.MemoryPointer(unowned_mem, 0))

        # Delete the source object
        del src_mem_ptr

        with device.Device(device_id):
            arr[:] = 2
            assert (arr == 2).all()
Example #3
0
    def check(self, device_id):
        if cupy.cuda.runtime.is_hip:
            if self.allocator is memory.malloc_managed:
                raise unittest.SkipTest('HIP does not support managed memory')
            if self.allocator is memory.malloc_async:
                raise unittest.SkipTest('HIP does not support async mempool')
        elif cupy.cuda.driver.get_build_version() < 11020:
            raise unittest.SkipTest('malloc_async is supported since '
                                    'CUDA 11.2')

        size = 24
        shape = (2, 3)
        dtype = cupy.float32
        with device.Device(device_id):
            src_mem_ptr = self.allocator(size)
        src_ptr = src_mem_ptr.ptr

        args = (src_ptr, size, src_mem_ptr)
        kwargs = {}
        if self.specify_device_id:
            kwargs = {'device_id': device_id}

        unowned_mem = memory.UnownedMemory(*args, **kwargs)
        assert unowned_mem.size == size
        assert unowned_mem.ptr == src_ptr
        assert unowned_mem.device_id == device_id

        arr = cupy.ndarray(shape, dtype, memory.MemoryPointer(unowned_mem, 0))

        # Delete the source object
        del src_mem_ptr

        with device.Device(device_id):
            arr[:] = 2
            assert (arr == 2).all()
Example #4
0
    def check(self, device_id):
        if cupy.cuda.runtime.is_hip:
            if self.allocator is memory.malloc_managed:
                if cupy.cuda.driver.get_build_version() < 40300000:
                    raise unittest.SkipTest(
                        'Managed memory requires ROCm 4.3+')
                else:
                    raise unittest.SkipTest(
                        'hipPointerGetAttributes does not support managed '
                        'memory')
            if self.allocator is memory.malloc_async:
                raise unittest.SkipTest('HIP does not support async mempool')
        else:
            if self.allocator is memory.malloc_async:
                if cupy.cuda.driver._is_cuda_python():
                    version = cupy.cuda.runtime.runtimeGetVersion()
                else:
                    version = cupy.cuda.driver.get_build_version()
                if version < 11020:
                    raise unittest.SkipTest('malloc_async is supported since '
                                            'CUDA 11.2')
                elif runtime.deviceGetAttribute(
                        runtime.cudaDevAttrMemoryPoolsSupported, 0) == 0:
                    raise unittest.SkipTest(
                        'malloc_async is not supported on device 0')

        size = 24
        shape = (2, 3)
        dtype = cupy.float32
        with device.Device(device_id):
            src_mem_ptr = self.allocator(size)
        src_ptr = src_mem_ptr.ptr

        args = (src_ptr, size, src_mem_ptr)
        kwargs = {}
        if self.specify_device_id:
            kwargs = {'device_id': device_id}

        if cupy.cuda.runtime.is_hip and self.allocator is memory._malloc:
            # In ROCm, it seems that `hipPointerGetAttributes()`, which is
            # called in `UnownedMemory()`, requires an unmanaged device pointer
            # that the current device must be the one on which the memory
            # referred to by the pointer physically resides.
            with device.Device(device_id):
                unowned_mem = memory.UnownedMemory(*args, **kwargs)
        else:
            unowned_mem = memory.UnownedMemory(*args, **kwargs)
        assert unowned_mem.size == size
        assert unowned_mem.ptr == src_ptr
        assert unowned_mem.device_id == device_id

        arr = cupy.ndarray(shape, dtype, memory.MemoryPointer(unowned_mem, 0))

        # Delete the source object
        del src_mem_ptr

        with device.Device(device_id):
            arr[:] = 2
            assert (arr == 2).all()
Example #5
0
def _convert_object_with_cuda_array_interface(a):
    desc = a.__cuda_array_interface__
    shape = desc['shape']
    dtype = numpy.dtype(desc['typestr'])
    if 'strides' in desc:
        strides = desc['strides']
        nbytes = numpy.max(numpy.array(shape) * numpy.array(strides))
    else:
        strides = None
        nbytes = numpy.prod(shape) * dtype.itemsize
    mem = memory.UnownedMemory(desc['data'][0], nbytes, a)
    memptr = memory.MemoryPointer(mem, 0)
    return ndarray(shape, dtype=dtype, memptr=memptr, strides=strides)
Example #6
0
def mock_alloc(size):
    mem = MockMemory(size)
    return memory.MemoryPointer(mem, 0)