Example #1
0
def generate_chunk(i_chunk, local_size, num_chunks, chunk_type, frac_match):
    cupy.random.seed(42)

    if chunk_type == "build":
        # Build dataframe
        #
        # "key" column is a unique sample within [0, local_size * num_chunks)
        #
        # "shuffle" column is a random selection of partitions (used for shuffle)
        #
        # "payload" column is a random permutation of the chunk_size

        start = local_size * i_chunk
        stop = start + local_size

        parts_array = cupy.arange(num_chunks, dtype="int64")
        df = cudf.DataFrame(
            {
                "key": cupy.arange(start, stop=stop, dtype="int64"),
                "payload": cupy.arange(local_size, dtype="int64"),
            }
        )
    else:
        # Other dataframe
        #
        # "key" column matches values from the build dataframe
        # for a fraction (`frac_match`) of the entries. The matching
        # entries are perfectly balanced across each partition of the
        # "base" dataframe.
        #
        # "payload" column is a random permutation of the chunk_size

        # Step 1. Choose values that DO match
        sub_local_size = local_size // num_chunks
        sub_local_size_use = max(int(sub_local_size * frac_match), 1)
        arrays = []
        for i in range(num_chunks):
            bgn = (local_size * i) + (sub_local_size * i_chunk)
            end = bgn + sub_local_size
            ar = cupy.arange(bgn, stop=end, dtype="int64")
            arrays.append(cupy.random.permutation(ar)[:sub_local_size_use])
        key_array_match = cupy.concatenate(tuple(arrays), axis=0)

        # Step 2. Add values that DON'T match
        missing_size = local_size - key_array_match.shape[0]
        start = local_size * num_chunks + local_size * i_chunk
        stop = start + missing_size
        key_array_no_match = cupy.arange(start, stop=stop, dtype="int64")

        # Step 3. Combine and create the final dataframe chunk
        key_array_combine = cupy.concatenate(
            (key_array_match, key_array_no_match), axis=0
        )
        df = cudf.DataFrame(
            {
                "key": cupy.random.permutation(key_array_combine),
                "payload": cupy.arange(local_size, dtype="int64"),
            }
        )
    return df
Example #2
0
    def encode(self, x):
        # print(x.shape)
        # print(x.shape)
        a, b, c = x.shape
        x = x.reshape(a, 1, c).astype(xp.float32)
        # x = xp.hstack([x[:,:,i:b-440+i:221] for i in range(441)]) * hamming
        x = xp.concatenate([
            x[:, :, :-221].reshape(a, -1, 1, 442), x[:, :, 221:].reshape(
                a, -1, 1, 442)
        ],
                           axis=2).reshape(a, -1, 442) * self.mado
        # print(x)

        x = xp.fft.fft(x, axis=-1)
        # xp.fft.fft(xp.arange(100).reshape(2,5,10),axis=-1)
        x = xp.concatenate(
            [x.real.reshape(a, 1, -1, 442),
             x.imag.reshape(a, 1, -1, 442)],
            axis=1)
        #.reshape(a, 2, -1, 442)
        # xp.concatenate([s.real.reshape(2,5,1,10),s.imag.reshape(2,5,1,10)],axis=2)
        # print(x.shape)
        x = xp.transpose(x, axes=(0, 1, 3, 2))
        # print(x.dtype)
        return x
def forward_prop(x, local_time, sequence, isFirst, timestamp, satellite_name):

    s = cp.empty([local_time, distance_forward, channels_hidden, M, N])

    e = cp.empty([local_time, distance_forward])

    alpha = cp.empty([local_time, distance_forward])

    p = cp.empty([local_time, channels_p, M, N])

    # Hidden Unit
    h = cp.empty([local_time + 1, channels_hidden, M, N])
    h[-1] = cp.zeros([channels_hidden, M, N])
    # LSTM FORWARD PROPAGATION
    for t in np.arange(local_time):

        # Attention Network
        for z in range(
                timestamp + t - (distance + learning_window), timestamp +
                distance_forward + t - (distance + learning_window)):
            temp = cp.concatenate(
                (cp.asarray(satellite_images[sequence][z]), h[t - 1]), axis=0)
            s[t][z - (timestamp + t - (distance + learning_window))] = tanh(
                cp.asarray(
                    F.convolution_2d(temp.reshape(
                        1, channels_img + channels_hidden, M, N),
                                     e_kernel,
                                     b=None,
                                     pad=pad_constant)[0].data) + bias_e)
            s_temp = s[t][z - (timestamp + t -
                               (distance + learning_window))].reshape(
                                   M * N * channels_hidden)
            e[t][z - (timestamp + t - (distance + learning_window))] = cp.dot(
                v_connected_weights,
                s_temp) + bias_v[z - (timestamp + t -
                                      (distance + learning_window))]

        xtemp = satellite_images[sequence][timestamp - distance:timestamp -
                                           distance + distance_forward, 0]

        alpha[t] = softmax(e[t])
        p[t] = cp.tensordot(alpha[t], cp.asarray(xtemp), axes=1).reshape(
            1, M, N)  # Sum all x arrays up, weighted array

        temporary = cp.concatenate((x[t], p[t], h[t - 1]), axis=0)
        temporary = temporary.reshape(
            1, channels_img + channels_p + channels_hidden, M, N)

        h[t] = tanh(
            cp.asarray(
                F.convolution_2d(temporary, main_kernel, b=None, pad=2)
                [0].data) + bias_h)

    # 1 x 1 convolution
    output = cp.matmul(connected_weights, h[local_time - 1].reshape(
        channels_hidden, M * N)).reshape(M, N) + bias_y[0]
    true_output = rect_linear(output)

    return true_output, output, cp.reshape(
        h[local_time - 1], (channels_hidden, M * N)), p, h, s, e, alpha, xtemp
Example #4
0
 def find_tcs(self,
              chunk_size=65536,
              overlap=1000,
              order=40,
              threshold=4,
              return_stds=False,
              whitening=False):
     all_spikes = [[], []]
     spike_amps = []
     stds = np.std(self.filtered_data(from_sample=0, to_sample=chunk_size),
                   axis=1)
     for i in trange(round(self.sample_length / chunk_size)):
         chunk = self.filtered_data(from_sample=i * chunk_size,
                                    to_sample=(i + 1) * chunk_size +
                                    overlap)
         if whitening:
             U, S, Vt = np.linalg.svd(chunk, full_matrices=False)
             chunk = cp.dot(U, Vt)
         chunk_spikes = cusignal.peak_finding.peak_finding.argrelmin(
             chunk, order=order, axis=1)
         spike_vals = chunk[chunk_spikes[0].get(), chunk_spikes[1].get()]
         sig_spikes = np.where(
             spike_vals <= -threshold * stds[chunk_spikes[0].get()])[0]
         all_spikes[0].append(chunk_spikes[0][sig_spikes])
         all_spikes[1].append(chunk_spikes[1][sig_spikes] + i * chunk_size)
         spike_amps.append(spike_vals[sig_spikes])
     all_spikes = cp.array(
         [cp.concatenate(all_spikes[0]),
          cp.concatenate(all_spikes[1])])
     if return_stds:
         return all_spikes, spike_amps, stds
     else:
         return all_spikes, spike_amps
def gradient2DGPU(mat):
    '''
    Function to calculate gradient of the 2D square matrix. Works on GPU.

    Copyright (c) Gabriel Peyre

    Parameters
    ----------
    mat : cupy.ndarray
        matrix to calculate gradient
        
    Returns:
    ----------
    [fx, fy] : cupy.ndarray
        gradient of `mat`
    '''
    x1 = mat[1:len(mat), :]
    x2 = cp.array([mat[-1, :]])
    x = cp.concatenate((x1, x2), axis=0)

    fx = x - mat
    y1 = mat[:, 1:len(mat)]
    y2 = cp.array([mat[:, -1]]).transpose()
    y = cp.concatenate((y1, y2), axis=1)

    fy = y - mat

    return [fx, fy]
Example #6
0
 def function_wrapper(x, b, axis=0, **kwargs):
     # add the padding to the array
     xsize = x.shape[axis]
     if 'pad' in kwargs and kwargs['pad']:
         npad = b.shape[axis] // 2
         padd = cp.take(x, cp.arange(npad), axis=axis) * 0
         if kwargs['pad'] == 'zeros':
             x = cp.concatenate((padd, x, padd), axis=axis)
         if kwargs['pad'] == 'constant':
             x = cp.concatenate((padd * 0 + cp.mean(x[:npad]), x,
                                 padd + cp.mean(x[-npad:])),
                                axis=axis)
         if kwargs['pad'] == 'flip':
             pad_in = cp.flip(cp.take(x, cp.arange(1, npad + 1), axis=axis),
                              axis=axis)
             pad_out = cp.flip(cp.take(x,
                                       cp.arange(xsize - npad - 1,
                                                 xsize - 1),
                                       axis=axis),
                               axis=axis)
             x = cp.concatenate((pad_in, x, pad_out), axis=axis)
     # run the convolution
     y = fcn_convolve(x, b, **kwargs)
     # remove padding from both arrays (necessary for x ?)
     if 'pad' in kwargs and kwargs['pad']:
         # remove the padding
         y = cp.take(y, cp.arange(npad, x.shape[axis] - npad), axis=axis)
         x = cp.take(x, cp.arange(npad, x.shape[axis] - npad), axis=axis)
         assert xsize == x.shape[axis]
         assert xsize == y.shape[axis]
     return y
Example #7
0
def take_filter(N, filter):
    os = 4
    d = 0.5
    Ne = os * N
    t = cp.arange(0, Ne / 2 + 1) / Ne

    if (filter == 'ramp'):
        wfa = Ne * 0.5 * wint(12, t)  # .*(t/(2*d)<=1)%compute the weigths
    elif (filter == 'shepp-logan'):
        wfa = Ne * 0.5 * wint(12, t) * cp.sinc(t / (2 * d)) * (t / d <= 2)
    elif (filter == 'cosine'):
        wfa = Ne * 0.5 * wint(12, t) * cp.cos(cp.pi * t /
                                              (2 * d)) * (t / d <= 1)
    elif (filter == 'cosine2'):
        wfa = Ne * 0.5 * wint(12, t) * (cp.cos(cp.pi * t /
                                               (2 * d)))**2 * (t / d <= 1)
    elif (filter == 'hamming'):
        wfa = Ne * 0.5 * wint(
            12, t) * (.54 + .46 * cp.cos(cp.pi * t / d)) * (t / d <= 1)
    elif (filter == 'hann'):
        wfa = Ne * 0.5 * wint(
            12, t) * (1 + np.cos(cp.pi * t / d)) / 2.0 * (t / d <= 1)
    elif (filter == 'parzen'):
        wfa = Ne * 0.5 * wint(12, t) * pow(1 - t / d, 3) * (t / d <= 1)

    wfa = wfa * (wfa >= 0)
    wfamid = cp.array([2 * wfa[0]])
    tmp = wfa
    wfa = cp.concatenate((cp.flipud(tmp[1:]), wfamid))
    wfa = cp.concatenate((wfa, tmp[1:]))
    wfa = wfa[:-1].astype('float32')
    return wfa
Example #8
0
def _build_laplacian(data, spacing, mask, beta, multichannel):
    l_x, l_y, l_z = data.shape[:3]
    edges = _make_graph_edges_3d(l_x, l_y, l_z)
    weights = _compute_weights_3d(data, spacing, beta=beta, eps=1.e-10,
                                  multichannel=multichannel)
    assert weights.dtype == data.dtype
    if mask is not None:
        # Remove edges of the graph connected to masked nodes, as well
        # as corresponding weights of the edges.
        mask0 = cp.concatenate([mask[..., :-1].ravel(), mask[:, :-1].ravel(),
                                mask[:-1].ravel()])
        mask1 = cp.concatenate([mask[..., 1:].ravel(), mask[:, 1:].ravel(),
                                mask[1:].ravel()])
        ind_mask = cp.logical_and(mask0, mask1)
        edges, weights = edges[:, ind_mask], weights[ind_mask]

        # Reassign edges labels to 0, 1, ... edges_number - 1
        _, inv_idx = cp.unique(edges, return_inverse=True)
        edges = inv_idx.reshape(edges.shape)

    # Build the sparse linear system
    pixel_nb = l_x * l_y * l_z
    i_indices = edges.ravel()
    j_indices = edges[::-1].ravel()
    data = cp.concatenate((weights, weights))
    lap = sparse.coo_matrix((data, (i_indices, j_indices)),
                            shape=(pixel_nb, pixel_nb))
    # need CSR instead of COO for indexing used later in _build_linear_system
    lap = lap.tocsr()
    lap.setdiag(-cp.ravel(lap.sum(axis=0)))
    return lap
def divergence2DGPU(mat):
    '''
    Function to calculate divergence of the 2D square matrix. Works on GPU.

    Copyright (c) Gabriel Peyre

    Parameters
    ----------
    mat : cupy.ndarray
        matrix to calculate divergence

    Returns:
    ----------
    fx + fy : cupy.ndarray
        divergence of `mat`
    '''
    Px = mat[0]
    Py = mat[1]

    fx = Px - cp.concatenate(
        (cp.array([Px[0, :]]), Px[0:len(Px) - 1, :]), axis=0)
    fx[0, :] = Px[0, :]
    fx[-1, :] = -Px[-2, :]

    fy = Py - cp.concatenate(
        (cp.array([Py[:, 0]]).transpose(), Py[:, 0:len(Py) - 1]), axis=1)
    fy[:, 0] = Py[:, 0]
    fy[:, -1] = -Py[:, -2]

    return fx + fy
Example #10
0
    def process(self, inputs):
        df = inputs[self.INPUT_PORT_NAME]
        all_sample_ids = df['sample_id'].unique()
        total_samples = len(all_sample_ids)
        window = self.conf['window']
        negative = self.conf.get("negative", False)
        drawdown, all_dates = get_drawdown(df,
                                           total_samples,
                                           negative=negative,
                                           window=window)

        total_samples, num_months, assets = drawdown.shape

        months_id = all_dates.dt.year * 12 + (all_dates.dt.month - 1)
        months_id = months_id - months_id.min()
        mid = (cupy.arange(months_id.max() + 1) +
               (all_dates.dt.month - 1)[0])[window:]
        minyear = all_dates.dt.year.min()
        if len(mid) == 0:
            mid = cupy.array([0])
        months = mid % 12
        years = mid // 12 + minyear

        output = {}
        df_drawdown = cudf.DataFrame(
            drawdown.reshape(total_samples * num_months, -1))
        df_drawdown['year'] = cupy.concatenate([years] * total_samples).astype(
            cupy.int16)
        df_drawdown['month'] = cupy.concatenate(
            [months] * total_samples).astype(cupy.int16)
        df_drawdown['sample_id'] = cupy.repeat(
            cupy.arange(total_samples) + all_sample_ids.min(), len(mid))
        output.update({self.OUTPUT_PORT_NAME: df_drawdown})
        return output
Example #11
0
def test_array_split(type, test_size, train_size, shuffle):
    X = np.zeros((100, 10)) + np.arange(100).reshape(100, 1)
    y = np.arange(100).reshape(100, 1)

    if type == 'cupy':
        X = cp.asarray(X)
        y = cp.asarray(y)

    if type == 'numba':
        X = cuda.to_device(X)
        y = cuda.to_device(y)

    if type == 'rmm':
        X = rmm.to_device(X)
        y = rmm.to_device(y)

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        train_size=train_size,
                                                        test_size=test_size,
                                                        shuffle=shuffle,
                                                        random_state=0)

    if type == 'cupy':
        assert isinstance(X_train, cp.ndarray)
        assert isinstance(X_test, cp.ndarray)
        assert isinstance(y_train, cp.ndarray)
        assert isinstance(y_test, cp.ndarray)

    if type in ['numba', 'rmm']:
        assert cuda.devicearray.is_cuda_ndarray(X_train)
        assert cuda.devicearray.is_cuda_ndarray(X_test)
        assert cuda.devicearray.is_cuda_ndarray(y_train)
        assert cuda.devicearray.is_cuda_ndarray(y_test)

    if train_size is not None:
        assert X_train.shape[0] == X.shape[0] * train_size
        assert y_train.shape[0] == y.shape[0] * train_size

    if test_size is not None:
        assert X_test.shape[0] == X.shape[0] * test_size
        assert y_test.shape[0] == y.shape[0] * test_size

    if shuffle is None:
        assert X_train == X[0:train_size]
        assert y_train == y[0:train_size]
        assert X_test == X[-1 * test_size:]
        assert y_test == y[-1 * test_size:]

        if tnc(X_train):
            X_train = PatchedNumbaDeviceArray(X_train)
            X_test = PatchedNumbaDeviceArray(X_test)
            y_train = PatchedNumbaDeviceArray(y_train)
            y_test = PatchedNumbaDeviceArray(y_test)

        X_rec = cp.sort(cp.concatenate(X_train, X_test))
        y_rec = cp.sort(cp.concatenate(y_train, y_test))

        assert X_rec == X
        assert y_rec == y
def _bss_decomp_mtifilt_cupy(reference_sources, estimated_source, j, flen,
                             nsrc):
    """Decomposition of an estimated source image into four components
    representing respectively the true source image, spatial (or filtering)
    distortion, interference and artifacts, derived from the true source
    images using multichannel time-invariant filters.
    """

    # decomposition
    # true source image

    s_true = cp.concatenate(
        (reference_sources[j], cp.zeros([flen - 1], dtype=cp.float64)), 0)

    # spatial (or filtering) distortion
    e_spat = _project_cupy(cp.expand_dims(reference_sources[j, :], 0),
                           estimated_source, flen, 1) - s_true

    # interference
    e_interf = _project_cupy(reference_sources, estimated_source, flen,
                             nsrc) - s_true - e_spat

    # artifacts
    e_artif = -s_true - e_spat - e_interf

    e_artif += cp.concatenate(
        (estimated_source, cp.zeros([flen - 1], dtype=cp.float64)), 0)

    return (s_true, e_spat, e_interf, e_artif)
Example #13
0
 def train(self, x_train, y_train, x_test, y_test, iterations):
     self.minx = -min(x_train.min().item(), x_test.min().item())
     train_in = cp.tile(
         cp.concatenate((x_train,
                         cp.zeros(shape=(x_train.shape[0],
                                         self.hidden + self.outputs))),
                        axis=1), (self.pop_size, 1, 1))
     test_in = cp.tile(
         cp.concatenate((x_test,
                         cp.zeros(shape=(x_test.shape[0],
                                         self.hidden + self.outputs))),
                        axis=1), (self.pop_size, 1, 1))
     for i in range(iterations):
         start_time = time.time()
         y_hat = self._forward_prop(train_in, True)
         fitness, train_loss, train_acc = self.evaluate(
             y_hat, y_train, self.problem_type)
         self._evolve(fitness)
         test_loss, test_acc = self.evaluate(
             self._forward_prop(test_in, False), y_test,
             self.problem_type)[1:]
         print(
             '[GENERATION %i/%i]\n\tTIME: %.2f seconds | TRAIN Loss: %.4f Acc: %.4f | TEST Loss: %.4f Acc: %.4f\n'
             % (i + 1, iterations, time.time() - start_time, train_loss,
                train_acc, test_loss, test_acc))
         if self.log_file:
             with open(self.log_file, 'a+') as file:
                 file.write(' '.join([
                     str(s) for s in [
                         i + 1, iterations,
                         time.time() - start_time, train_loss, train_acc,
                         test_loss, test_acc
                     ]
                 ]) + '\n')
     return test_acc
Example #14
0
def generate_negatives(neg_users, true_mat, item_range, sort=False, use_trick=False):
    """ 
    Generate negative samples for data augmentation
    """
    neg_u = []
    neg_i = []

    # If using the shortcut, generate negative items without checking if the associated
    # user has interacted with it. Speeds up training significantly with very low impact
    # on accuracy.
    if use_trick:
        neg_items = cp.random.randint(0, high=item_range, size=neg_users.shape[0])
        return neg_users, neg_items

    # Otherwise, generate negative items, check if associated user has interacted with it,
    # then generate a new one if true
    while len(neg_users) > 0:
        neg_items = cp.random.randint(0, high=item_range, size=neg_users.shape[0])
        neg_mask = true_mat[neg_users, neg_items]
        neg_u.append(neg_users[neg_mask])
        neg_i.append(neg_items[neg_mask])

        neg_users = neg_users[cp.logical_not(neg_mask)]

    neg_users = cp.concatenate(neg_u)
    neg_items = cp.concatenate(neg_i)

    if sort == False:
        return neg_users, neg_items

    sorted_users = cp.sort(neg_users)
    sort_indices = cp.argsort(neg_users)

    return sorted_users, neg_items[sort_indices]
Example #15
0
 def test_concatenate_large_different_devices(self):
     arrs = []
     for i in range(10):
         with cuda.Device(i % 2):
             arrs.append(cupy.empty((2, 3, 4)))
     with pytest.raises(ValueError):
         cupy.concatenate(arrs)
def computeRT(item_path, xp=np):
    with open(item_path, 'r') as f:
        LINES = [line.strip("';\n") for line in f]

    param = {}
    for index, args in enumerate(LINES):
        name = args[:15].replace(" ", "")
        name = name[:].replace("=", "")
        val = args[15:]
        val = xp.asarray(val.strip("[]").split(","), dtype=xp.float64)
        param[name] = val

    cam_dir = param["cam_dir"]
    cam_pos = param["cam_pos"]
    cam_up = param["cam_up"]

    z = cam_dir / xp.linalg.norm(cam_dir)

    x = xp.cross(cam_up, z)
    x = x / xp.linalg.norm(x)

    y = xp.cross(z, x)

    x = xp.expand_dims(x, axis=1)
    y = xp.expand_dims(y, axis=1)
    z = xp.expand_dims(z, axis=1)

    R = xp.concatenate([x, y, z], axis=1)
    T = xp.expand_dims(cam_pos, axis=1)

    R_T = xp.concatenate([R, T], axis=1)

    return R_T
Example #17
0
 def __init__(self, dtype):
     self.c = np.hstack([
         np.random.rand(N, int(2 * M / 4), dtype=np.float32),
         np.zeros((N, int(2 * M / 4)))
     ])
     self.x = np.array([(m / M) * A * Pe for m in range(M)],
                       dtype=np.float32)
     self.y = np.array([(n / N) * Pe for n in range(N)], dtype=np.float32)
     a = np.asarray(range(0, int(M / 2)),
                    dtype=np.float32) * 2 * np.pi / (A * Pe)
     b = np.asarray(range(int(-M / 2 + 1), 0),
                    dtype=np.float32) * 2 * np.pi / (A * Pe)
     self.km = np.concatenate((a, np.concatenate(
         (np.array([0]), b)))).astype(np.float32)
     c = np.asarray(range(0, int(N / 2)), dtype=np.float32) * 2 * np.pi / Pe
     d = np.asarray(range(int(-N / 2 + 1), 0),
                    dtype=np.float32) * 2 * np.pi / Pe
     self.kn = np.concatenate((c, np.concatenate(
         (np.array([0]), d)))).astype(np.float32)
     self.km_km = np.tile(self.km, (N, 1)).astype(np.float32)
     self.kn_kn = np.tile(self.kn, (M, 1)).astype(np.float32).T
     #print(self.kn_kn.shape)
     self.c_hat = np.fft.fft2(self.c).astype(np.complex64)
     self.phi_x = np.zeros((N, M), dtype=np.complex)
     self.phi_y = np.zeros((N, M), dtype=np.complex)
     self.c_x = np.fft.ifft2(self.c_hat * self.km_km * 1.0j).astype(
         np.complex64)
     self.c_y = np.fft.ifft2(self.c_hat * self.kn_kn * 1.0j).astype(
         np.complex64)
     self.km2kn2 = self.km_km**2 + self.kn_kn**2
Example #18
0
def concatenate_organism(organism_a, organism_b):
    return [
        (
            cp.concatenate((organism_a[i][0], organism_b[i][0]), axis=0), # layer_weight
            cp.concatenate((organism_a[i][1], organism_b[i][1]), axis=0) # layer_bias
        )
        for i in range(len(organism_a))
    ]
Example #19
0
def mass2_gpu(ts, query):
    """
    Compute the distance profile for the given query over the given time 
    series. This require cupy to be installed.

    Parameters
    ----------
    ts : array_like
        The array to create a rolling window on.
    query : array_like
        The query.

    Returns
    -------
    An array of distances.

    Raises
    ------
    ValueError
        If ts is not a list or np.array.
        If query is not a list or np.array.
        If ts or query is not one dimensional.
    """
    def moving_mean_std_gpu(a, w):
        s = cp.concatenate([cp.array([0]), cp.cumsum(a)])
        sSq = cp.concatenate([cp.array([0]), cp.cumsum(a**2)])
        segSum = s[w:] - s[:-w]
        segSumSq = sSq[w:] - sSq[:-w]

        movmean = segSum / w
        movstd = cp.sqrt(segSumSq / w - (segSum / w)**2)

        return (movmean, movstd)

    x = cp.asarray(ts)
    y = cp.asarray(query)
    n = x.size
    m = y.size

    meany = cp.mean(y)
    sigmay = cp.std(y)

    meanx, sigmax = moving_mean_std_gpu(x, m)
    meanx = cp.concatenate([cp.ones(n - meanx.size), meanx])
    sigmax = cp.concatenate([cp.zeros(n - sigmax.size), sigmax])

    y = cp.concatenate((cp.flip(y, axis=0), cp.zeros(n - m)))

    X = cp.fft.fft(x)
    Y = cp.fft.fft(y)
    Z = X * Y
    z = cp.fft.ifft(Z)

    dist = 2 * (m - (z[m - 1:n] - m * meanx[m - 1:n] * meany) /
                (sigmax[m - 1:n] * sigmay))
    dist = cp.sqrt(dist)

    return cp.asnumpy(dist)
Example #20
0
    def transform(self, X):
        """
        Transform X using one-hot encoding.

        Parameters
        ----------
        X : cudf.DataFrame or cupy.ndarray
            The data to encode.

        Returns
        -------
        X_out : sparse matrix if sparse=True else a 2-d array
            Transformed input.
        """
        self._check_is_fitted()
        X = self._check_input(X)

        cols, rows = list(), list()
        j = 0
        for feature in X.columns:
            encoder = self._encoders[feature]
            col_idx = encoder.transform(X[feature])
            col_idx = cp.asarray(col_idx.to_gpu_array(fillna="pandas"))
            idx_to_keep = col_idx > -1

            # increase indices to take previous features into account
            col_idx += j

            # Filter out rows with null values
            row_idx = cp.arange(len(X))[idx_to_keep]
            col_idx = col_idx[idx_to_keep]

            if self.drop_idx_ is not None:
                drop_idx = self.drop_idx_[feature] + j
                mask = cp.ones(col_idx.shape, dtype=cp.bool)
                mask[col_idx == drop_idx] = False
                col_idx = col_idx[mask]
                row_idx = row_idx[mask]
                # account for dropped category in indices
                col_idx[col_idx > drop_idx] -= 1
                # account for dropped category in current cats number
                j -= 1
            j += len(encoder.classes_)
            cols.append(col_idx)
            rows.append(row_idx)

        cols = cp.concatenate(cols)
        rows = cp.concatenate(rows)
        val = cp.ones(rows.shape[0], dtype=self.dtype)
        ohe = cp.sparse.coo_matrix((val, (rows, cols)),
                                   shape=(len(X), j),
                                   dtype=self.dtype)

        if not self.sparse:
            ohe = ohe.toarray()

        return ohe
Example #21
0
    def _process_feats(self, output_reshaped, mask):
        """Take in a reshaped YOLO output in height,width,3,85 format together with its
        corresponding YOLO mask and return the detected bounding boxes, the confidence,
        and the class probability in each cell/pixel.

        Keyword arguments:
        output_reshaped -- reshaped YOLO output as NumPy arrays with shape (3,height,width,85)
        mask -- 2-dimensional tuple with mask specification for this output
        """

        # Two in-line functions required for calculating the bounding box
        # descriptors:
        def sigmoid(value):
            """Return the sigmoid of the input."""
            return 1.0 / (1.0 + cp.exp(-value))

        def exponential(value):
            """Return the exponential of the input."""
            return cp.exp(value)

        # Vectorized calculation of above two functions:
        sigmoid_v = np.vectorize(sigmoid)
        exponential_v = np.vectorize(exponential)
        output_reshaped = cp.asarray(output_reshaped)
        grid_h, grid_w, _, _ = output_reshaped.shape

        anchors = cp.asarray(np.array([self.anchors[i] for i in mask]))

        # Reshape to N, height, width, num_anchors, box_params:
        anchors_tensor = cp.reshape(anchors, (1, 1, anchors.shape[0], 2))
        box_xy = sigmoid(output_reshaped[..., :2])
        box_wh = exponential(output_reshaped[..., 2:4]) * anchors_tensor
        box_confidence = sigmoid(output_reshaped[..., 4])

        box_confidence = cp.expand_dims(box_confidence, axis=-1)
        box_class_probs = sigmoid(output_reshaped[..., 5:])

        col = cp.tile(cp.arange(0, grid_w), grid_w).reshape(-1, grid_w)
        row = cp.tile(cp.arange(0, grid_h).reshape(-1, 1), grid_h)

        col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
        row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
        grid = cp.concatenate((col, row), axis=-1)

        box_xy += grid
        #box_xy /= (grid_w, grid_h)
        box_xy[..., 0] = box_xy[..., 0] / grid_w
        box_xy[..., 1] = box_xy[..., 1] / grid_h
        #box_wh /= self.input_resolution_yolo
        box_wh[..., 0] = box_wh[..., 0] / self.input_resolution_yolo[0]
        box_wh[..., 1] = box_wh[..., 1] / self.input_resolution_yolo[1]
        box_xy -= (box_wh / 2.)
        boxes = cp.concatenate((box_xy, box_wh), axis=-1)

        # boxes: centroids, box_confidence: confidence level, box_class_probs:
        # class confidence
        return boxes, box_confidence, box_class_probs
Example #22
0
    def moving_mean_std_gpu(a, w):
        s = cp.concatenate([cp.array([0]), cp.cumsum(a)])
        sSq = cp.concatenate([cp.array([0]), cp.cumsum(a**2)])
        segSum = s[w:] - s[:-w]
        segSumSq = sSq[w:] - sSq[:-w]

        movmean = segSum / w
        movstd = cp.sqrt(segSumSq / w - (segSum / w)**2)

        return (movmean, movstd)
 def convert(batch):
     data = []
     label1 = []
     label2 = []
     for x in batch:
         data.append(cp.array(x[:, 0:-2], dtype=cp.float32))
         label1.append(cp.array(x[:, -2], dtype=cp.int32))
         label2.append(cp.array(x[:, -1], dtype=cp.int32))
     return data, cp.concatenate(label1, axis=0), cp.concatenate(label2,
                                                                 axis=0)
Example #24
0
 def pack_beta(self):
     beta = cp.array([])
     for i, layer in enumerate(self.data):
         for neuron in layer:
             if i == 0:
                 for w in neuron.W.T:
                     beta = cp.concatenate((beta, w), axis=0)
             else:
                 beta = cp.concatenate((beta, neuron.w), axis=0)
     return beta
Example #25
0
def load_data_slices(filename, slice_lists, input_name, target_name):
    stops = [s.stop for s in list_concat(slice_lists)]
    if not all(stops):
        raise Exception("Slices can't be open-ended")

    data = read_csv(filename, max(stops), input_name, target_name)

    return [(np.concatenate([data[0][s] for s in slices], axis=0),
             np.concatenate([data[1][s] for s in slices], axis=0))
            for slices in slice_lists]
Example #26
0
    def sampler(self, w, gamma, pi, xi, z, alpha, u, N, T, y, x, beta,
                sigma_v_sqr, sigma_alpha_sqr, eta, H, delta):
        NT = N * T
        # sample u from N(mu_u, V_u)
        my_mean = cp.asarray(np.dot(w, z))
        my_std = cp.asarray(np.exp(np.dot(w, gamma))**0.5)
        a, b = -my_mean / my_std, cp.inf * cp.ones([
            N,
        ])
        #    eta_particles = truncnorm.rvs(a,b,loc = my_mean, scale = my_std, size = (H,N))
        eta_particles = TruncNormal.rvs(a, b, my_mean, my_std, (H, N))
        eta_particles = cp.concatenate(
            [eta_particles, cp.asarray(eta).reshape(-1, 1).T], axis=0)

        my_mean = cp.asarray(np.dot(pi, delta))
        my_std = cp.asarray(np.exp(np.dot(pi, xi))**0.5)
        a, b = -my_mean / my_std, cp.inf * cp.ones([
            NT,
        ])
        u_particles = TruncNormal.rvs(a, b, my_mean, my_std, (H, NT))
        u_particles = cp.concatenate(
            [u_particles, cp.asarray(u).reshape(-1, 1).T], axis=0)

        #   alpha_particles = norm.rvs(0, sigma_alpha_sqr ** 0.5, size=(H,N))
        #    alpha_particles = np.asarray(alpha_particles)
        #    alpha_particles = np.concatenate([alpha_particles, alpha.reshape(-1,1).T], axis=0)
        alpha_particles = cp.random.normal(0,
                                           sigma_alpha_sqr**0.5,
                                           size=(H, N))
        alpha_particles = cp.concatenate(
            [alpha_particles,
             cp.asarray(alpha).reshape(-1, 1).T], axis=0)

        inv_sqrt_2pi = 0.3989422804014327
        W = inv_sqrt_2pi * cp.exp(-cp.square(
            ((cp.asarray(y - np.dot(x, beta)) -
              cp.kron(alpha_particles + eta_particles, cp.ones([
                  T,
              ])) - u_particles) /
             (sigma_v_sqr**0.5))) / 2) / (sigma_v_sqr**0.5)
        #x_ = ((cp.asarray(y - np.dot(x,beta))-alpha_particles_)/(sigma_v_sqr**0.5))
        #del alpha_particles_

        #w = gpu_normal_pdf(x_)
        w_ = W.reshape([H + 1, N, T]).prod(axis=2)
        w_ = w_ / w_.sum(axis=0)

        index = self._vectorized(w_)
        new_alpha = alpha_particles[index, cp.arange(N)].get()
        new_eta = eta_particles[index, cp.arange(N)].get()
        new_u = u_particles[cp.kron(index, cp.ones([
            T,
        ])).astype(int),
                            cp.arange(N * T)].get()
        return new_eta, new_alpha, new_u
Example #27
0
    def evaluate(self):
        def sigmoid(x):
            return 1. / (1 + cupy.exp(-x)) if self.device >= 0 else \
                1. / (1 + numpy.exp(-x))

        iterator = self._iterators['main']
        eval_func = self.eval_func or self._targets['main']

        if self.eval_hook:
            self.eval_hook(self)

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        y_total = []
        t_total = []
        for batch in it:
            in_arrays = self.converter(batch, self.device)
            with chainer.no_backprop_mode(), chainer.using_config(
                    'train', False):
                y = eval_func(*in_arrays[:-1])
            t = in_arrays[-1]
            # y_data = _get_1d_numpy_array(y)
            # t_data = _get_1d_numpy_array(t)

            y_data = y.data
            t_data = t

            y_total.append(y_data)
            t_total.append(t_data)

        # y_total = numpy.concatenate(y_total).ravel()
        # t_total = numpy.concatenate(t_total).ravel()
        y_total = cupy.concatenate(
            y_total) if self.device >= 0 else numpy.concatenate(y_total)
        y_total = sigmoid(y_total)
        t_total = cupy.concatenate(
            t_total) if self.device >= 0 else numpy.concatenate(t_total)

        # metrics_value = self.metrics_fun(y_total, t_total)
        if self.device >= 0:
            y_total = cupy.asnumpy(y_total)
            t_total = cupy.asnumpy(t_total)
        metrics = {
            key: metric_fun(y_total, t_total)
            for key, metric_fun in self.metrics_fun.items()
        }

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(metrics, self._targets['main'])
        return observation
Example #28
0
 def _crossover(self, selected):
     point = cp.random.randint(1, self.total - 1).item()
     self.weights = cp.concatenate(
         (self.weights[selected[0, :], :point, :],
          self.weights[selected[1, :], point:, :]),
         axis=1)
     self.biases = self.biases[selected[
         1, :], :, :] if point <= self.inputs else cp.concatenate(
             (self.biases[selected[0, :], :, :point - self.inputs],
              self.biases[selected[1, :], :, point - self.inputs:]),
             axis=2)
Example #29
0
 def test_concatenate_large_different_devices(self):
     arrs = []
     for i in range(10):
         with cuda.Device(i % 2):
             arrs.append(cupy.empty((2, 3, 4)))
     if cuda.runtime.deviceCanAccessPeer(0, 1) == 1:
         with pytest.warns(cupy._util.PerformanceWarning):
             cupy.concatenate(arrs)
     else:
         with pytest.raises(ValueError):
             cupy.concatenate(arrs)
Example #30
0
def inplace_swap_row_csr(X, m, n):
    """
    Swaps two rows of a CSR matrix in-place.

    Parameters
    ----------
    X : scipy.sparse.csr_matrix, shape=(n_samples, n_features)
        Matrix whose two rows are to be swapped.

    m : int
        Index of the row of X to be swapped.

    n : int
        Index of the row of X to be swapped.
    """
    for t in [m, n]:
        if isinstance(t, np.ndarray):
            raise TypeError("m and n should be valid integers")

    if m < 0:
        m += X.shape[0]
    if n < 0:
        n += X.shape[0]

    # The following swapping makes life easier since m is assumed to be the
    # smaller integer below.
    if m > n:
        m, n = n, m

    indptr = X.indptr
    m_start = indptr[m]
    m_stop = indptr[m + 1]
    n_start = indptr[n]
    n_stop = indptr[n + 1]
    nz_m = m_stop - m_start
    nz_n = n_stop - n_start

    if nz_m != nz_n:
        # Modify indptr first
        X.indptr[m + 2:n] += nz_n - nz_m
        X.indptr[m + 1] = m_start + nz_n
        X.indptr[n] = n_stop - nz_m

    X.indices = np.concatenate([
        X.indices[:m_start], X.indices[n_start:n_stop],
        X.indices[m_stop:n_start], X.indices[m_start:m_stop],
        X.indices[n_stop:]
    ])
    X.data = np.concatenate([
        X.data[:m_start], X.data[n_start:n_stop], X.data[m_stop:n_start],
        X.data[m_start:m_stop], X.data[n_stop:]
    ])
Example #31
0
def _prepend_const(narray, pad_amount, value, axis=-1):
    if pad_amount == 0:
        return narray
    padshape = tuple(x if i != axis else pad_amount
                     for i, x in enumerate(narray.shape))
    return cupy.concatenate((cupy.full(padshape, value, narray.dtype),
                             narray), axis=axis)
Example #32
0
 def test_concatenate_wrong_shape(self):
     a = cupy.empty((2, 3, 4))
     b = cupy.empty((3, 3, 4))
     c = cupy.empty((4, 4, 4))
     with self.assertRaises(ValueError):
         cupy.concatenate((a, b, c))
Example #33
0
 def test_concatenate_wrong_ndim(self):
     a = cupy.empty((2, 3))
     b = cupy.empty((2,))
     with self.assertRaises(ValueError):
         cupy.concatenate((a, b))
Example #34
0
    def train(self):
        # clear grads
        self.q_func.zerograds()

        # pull tuples from memory pool
        batch_tuples = self.replay.pull(Config.batch_size)
        if not len(batch_tuples):
            return

        # stack inputs
        cur_x = [self.env.getX(t.state) for t in batch_tuples]
        next_x = [self.env.getX(t.next_state) for t in batch_tuples]
        # merge inputs into one array
        if Config.gpu:
            cur_x = [cupy.expand_dims(t, 0) for t in cur_x]
            cur_x = cupy.concatenate(cur_x, 0)
            next_x = [cupy.expand_dims(t, 0) for t in next_x]
            next_x = cupy.concatenate(next_x, 0)
        else:
            cur_x = np.stack(cur_x)
            next_x = np.stack(next_x)

        # get cur outputs
        cur_output = self.QFunc(self.q_func, cur_x)
        # get next outputs, NOT target
        next_output = self.QFunc(self.q_func, next_x)
        # choose next action for each output
        next_action = [
            self.env.getBestAction(
                o.data,
                [t.next_state for t in batch_tuples]
            ) for o in next_output  # for each head in Model
        ]
        # get next outputs, target
        next_output = self.QFunc(self.target_q_func, next_x)

        # clear err of tuples
        for t in batch_tuples:
            t.err = 0.
        # store err count
        err_count_list = [0.] * len(batch_tuples)

        # compute grad's weights
        weights = np.array([t.P for t in batch_tuples], np.float32)
        if Config.gpu:
            weights = cuda.to_gpu(weights)
        if self.replay.getPoolSize():
            weights *= self.replay.getPoolSize()
        weights = weights ** -Config.beta
        weights /= weights.max()
        if Config.gpu:
            weights = cupy.expand_dims(weights, 1)
        else:
            weights = np.expand_dims(weights, 1)

        # update beta
        Config.beta = min(1, Config.beta + Config.beta_add)

        # compute grad for each head
        for k in range(Config.K):
            if Config.gpu:
                cur_output[k].grad = cupy.zeros_like(cur_output[k].data)
            else:
                cur_output[k].grad = np.zeros_like(cur_output[k].data)
            # compute grad from each tuples
            for i in range(len(batch_tuples)):
                if batch_tuples[i].mask[k]:
                    cur_action_value = \
                        cur_output[k].data[i][batch_tuples[i].action].tolist()
                    reward = batch_tuples[i].reward
                    next_action_value = \
                        next_output[k].data[i][next_action[k][i]].tolist()
                    target_value = reward
                    # if not empty position, not terminal state
                    if batch_tuples[i].next_state.in_game:
                        target_value += Config.gamma * next_action_value
                    loss = cur_action_value - target_value
                    cur_output[k].grad[i][batch_tuples[i].action] = 2 * loss
                    # count err
                    if cur_action_value:
                        batch_tuples[i].err += abs(loss / cur_action_value)
                        err_count_list[i] += 1

            # multiply weights with grad and clip
            if Config.gpu:
                cur_output[k].grad = cupy.multiply(
                    cur_output[k].grad, weights)
                cur_output[k].grad = cupy.clip(cur_output[k].grad, -1, 1)
            else:
                cur_output[k].grad = np.multiply(
                    cur_output[k].grad, weights)
                cur_output[k].grad = np.clip(cur_output[k].grad, -1, 1)
            # backward
            cur_output[k].backward()

        # adjust grads of shared
        for param in self.q_func.shared.params():
            param.grad /= Config.K

        # update params
        self.optimizer.update()

        # avg err
        for i in range(len(batch_tuples)):
            if err_count_list[i] > 0:
                batch_tuples[i].err /= err_count_list[i]

        self.replay.merge(Config.alpha)

        return np.mean([t.err for t in batch_tuples])