def conv_channel(cycle, vol, kernel, gpu_id=0, verbose=False): if gpu_id >= 0: # from chainer.functions import convolution_nd import cupy as cp from cupyx.scipy.ndimage import convolve cp.cuda.Device(gpu_id).use() kernel = cp.asarray(kernel) cycle_conv = np.stack([ cp.asnumpy(convolve(cp.asarray(cycle[i]),kernel)) for i in range(len(cycle))]) ## using chainer # kernel = cp.asarray(kernel[np.newaxis,np.newaxis,:]) # cycle_conv = cp.asnumpy(convolution_nd(cp.asarray(cycle[:,np.newaxis,:]),kernel,pad=h)) if verbose: print("normalising by local volume...") # volume = cp.asnumpy(convolution_nd( cp.asarray((vol>-2048),dtype=np.float32)[np.newaxis,np.newaxis,:], cp.ones((1,1,h,h,h),dtype=np.float32) ))[0] vkernel = cp.ones(kernel.shape,dtype=np.float32)/np.prod(kernel.shape) volume = cp.asnumpy(convolve( cp.asarray((vol>-2048),dtype=np.float32), vkernel )[np.newaxis,:]) else: from scipy.ndimage.filters import convolve cycle_conv = np.stack([convolve(cycle[i],kernel) for i in range(len(cycle))]) if verbose: print("normalising by local volume...") vkernel = np.ones(kernel.shape,dtype=np.float32)/np.prod(kernel.shape) volume = convolve( (vol>-2048).astype(np.float32), vkernel )[np.newaxis,:] # normalise by volume volume[:,vol<=-2048] = np.inf return(cycle_conv / volume)
def diffuse_slime_trail(): cp.multiply( SlimeWorld.cells, SlimeWorld.trail_reduction_factor, out=SlimeWorld.cells, casting="unsafe", ) convolve(SlimeWorld.cells, SlimeWorld.trail_kernel, output=SlimeWorld.cells)
def _interpolate_image(image, *, multichannel=False): """Replacing each pixel in ``image`` with the average of its neighbors. Parameters ---------- image : ndarray Input data to be interpolated. multichannel : bool, optional Whether the last axis of the image is to be interpreted as multiple channels or another spatial dimension. Returns ------- interp : ndarray Interpolated version of `image`. """ spatialdims = image.ndim if not multichannel else image.ndim - 1 conv_filter = ndi.generate_binary_structure(spatialdims, 1).astype(image.dtype) conv_filter.ravel()[conv_filter.size // 2] = 0 conv_filter /= conv_filter.sum() # CuPy Backend: refactored below to avoid for loop if multichannel: conv_filter = conv_filter[..., np.newaxis] interp = ndi.convolve(image, conv_filter, mode='mirror') return interp
def farid_v(image, *, mask=None): """Find the vertical edges of an image using the Farid transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Farid edge map. Notes ----- The kernel was constructed using the 5-tap weights from [1]. References ---------- .. [1] Farid, H. and Simoncelli, E. P., "Differentiation of discrete multidimensional signals", IEEE Transactions on Image Processing 13(4): 496-508, 2004. :DOI:`10.1109/TIP.2004.823819` """ check_nD(image, 2) image = img_as_float(image) result = ndi.convolve(image, cp.array(VFARID_WEIGHTS, dtype=image.dtype)) return _mask_filter_result(result, mask)
def farid_h(image, *, mask=None): """Find the horizontal edges of an image using the Farid transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Farid edge map. Notes ----- The kernel was constructed using the 5-tap weights from [1]. References ---------- .. [1] Farid, H. and Simoncelli, E. P., "Differentiation of discrete multidimensional signals", IEEE Transactions on Image Processing 13(4): 496-508, 2004. :DOI:`10.1109/TIP.2004.823819` .. [2] Farid, H. and Simoncelli, E. P. "Optimally rotation-equivariant directional derivative kernels", In: 7th International Conference on Computer Analysis of Images and Patterns, Kiel, Germany. Sep, 1997. """ check_nD(image, 2) image = img_as_float(image) result = ndi.convolve(image, cp.array(HFARID_WEIGHTS, dtype=image.dtype)) return _mask_filter_result(result, mask)
def roberts_neg_diag(image, mask=None): """Find the cross edges of an image using the Roberts' Cross operator. The kernel is applied to the input image to produce separate measurements of the gradient component one orientation. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Robert's edge map. Notes ----- We use the following kernel:: 0 1 -1 0 """ check_nD(image, 2) image = img_as_float(image) # CuPy Backend: allow float16 & float32 filtering weights = cp.array(ROBERTS_ND_WEIGHTS, dtype=image.dtype) result = ndi.convolve(image, weights) return _mask_filter_result(result, mask)
def test_image_shape(): """Test that shape of output image in deconvolution is same as input. This addresses issue #1172. """ point = cp.zeros((5, 5), np.float) point[2, 2] = 1.0 psf = ndi.gaussian_filter(point, sigma=1.0) # image shape: (45, 45), as reported in #1172 image = cp.asarray(test_img[65:165, 215:315]) # just the face image_conv = ndi.convolve(image, psf) deconv_sup = restoration.wiener(image_conv, psf, 1) deconv_un = restoration.unsupervised_wiener(image_conv, psf)[0] # test the shape assert image.shape == deconv_sup.shape assert image.shape == deconv_un.shape # test the reconstruction error sup_relative_error = cp.abs(deconv_sup - image) / image un_relative_error = cp.abs(deconv_un - image) / image cp.testing.assert_array_less(cp.median(sup_relative_error), 0.1) cp.testing.assert_array_less(cp.median(un_relative_error), 0.1)
def laplace(image, ksize=3, mask=None): """Find the edges of an image using the Laplace operator. Parameters ---------- image : ndarray Image to process. ksize : int, optional Define the size of the discrete Laplacian operator such that it will have a size of (ksize,) * image.ndim. mask : ndarray, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : ndarray The Laplace edge map. Notes ----- The Laplacian operator is generated using the function skimage.restoration.uft.laplacian(). """ image = img_as_float(image) # TODO: File an upstream bug for scikit-image. ksize does not appear to # actually be used and is hard-coded to 3 in `laplacian`. if ksize != 3: raise NotImplementedError("only ksize=3 is supported") # Create the discrete Laplacian operator - We keep only the real part of # the filter laplace_op = laplacian(image.ndim, None, dtype=image.dtype) result = ndi.convolve(image, laplace_op) return _mask_filter_result(result, mask)
def set_args(self, dtype): if np.dtype(dtype).kind in "iu": im1 = skimage.data.camera() else: im1 = skimage.data.camera() / 255.0 im1 = im1.astype(dtype) if len(self.shape) == 3: im1 = im1[..., np.newaxis] im1 = cp.array(im1) n_tile = [ math.ceil(s / im_s) for s, im_s in zip(self.shape, im1.shape) ] slices = tuple([slice(s) for s in self.shape]) imaged = cp.tile(im1, n_tile)[slices] psfd = cp.ones((5, ) * imaged.ndim) / 25 imaged = ndi.convolve(imaged, psfd) image = cp.asnumpy(imaged) psf = cp.asnumpy(psfd) self.args_cpu = (image, psf) self.args_gpu = (imaged, psfd)
def gabor(image, frequency, theta=0, bandwidth=1, sigma_x=None, sigma_y=None, n_stds=3, offset=0, mode='reflect', cval=0): """Return real and imaginary responses to Gabor filter. The real and imaginary parts of the Gabor filter kernel are applied to the image and the response is returned as a pair of arrays. Gabor filter is a linear filter with a Gaussian kernel which is modulated by a sinusoidal plane wave. Frequency and orientation representations of the Gabor filter are similar to those of the human visual system. Gabor filter banks are commonly used in computer vision and image processing. They are especially suitable for edge detection and texture classification. Parameters ---------- image : 2-D array Input image. frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, ``sigma_x`` and ``sigma_y`` will decrease with increasing frequency. This value is ignored if ``sigma_x`` and ``sigma_y`` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that ``sigma_x`` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations. offset : float, optional Phase offset of harmonic function in radians. mode : {'constant', 'nearest', 'reflect', 'mirror', 'wrap'}, optional Mode used to convolve image with a kernel, passed to `ndi.convolve` cval : scalar, optional Value to fill past edges of input if ``mode`` of convolution is 'constant'. The parameter is passed to `ndi.convolve`. Returns ------- real, imag : arrays Filtered images using the real and imaginary parts of the Gabor filter kernel. Images are of the same dimensions as the input one. References ---------- .. [1] https://en.wikipedia.org/wiki/Gabor_filter .. [2] https://web.archive.org/web/20180127125930/http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> import cupy as cp >>> from cucim.skimage.filters import gabor >>> from skimage import data, io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> image = cp.array(data.coins()) >>> # detecting edges in a coin image >>> filt_real, filt_imag = gabor(image, frequency=0.6) >>> plt.figure() # doctest: +SKIP >>> io.imshow(cp.asnumpy(filt_real)) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # less sensitivity to finer details with the lower frequency kernel >>> filt_real, filt_imag = gabor(image, frequency=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(cp.asnumpy(filt_real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ # noqa check_nD(image, 2) float_dtype = cp.promote_types(image.dtype, cp.float16) g = gabor_kernel(frequency, theta, bandwidth, sigma_x, sigma_y, n_stds, offset, float_dtype=float_dtype) filtered = ndi.convolve(image, g, mode=mode, cval=cval) return filtered.real, filtered.imag
def estimate_sigma(arr, disable_background_masking=False, N=0): """Standard deviation estimation from local patches Parameters ---------- arr : 3D or 4D ndarray The array to be estimated disable_background_masking : bool, default False If True, uses all voxels for the estimation, otherwise, only non-zeros voxels are used. Useful if the background is masked by the scanner. N : int, default 0 Number of coils of the receiver array. Use N = 1 in case of a SENSE reconstruction (Philips scanners) or the number of coils for a GRAPPA reconstruction (Siemens and GE). Use 0 to disable the correction factor, as for example if the noise is Gaussian distributed. See [1] for more information. Returns ------- sigma : ndarray standard deviation of the noise, one estimation per volume. Notes ------- This function is the same as manually taking the standard deviation of the background and gives one value for the whole 3D array. It also includes the coil-dependent correction factor of Koay 2006 (see [1]_, equation 18) with theta = 0. Since this function was introduced in [2]_ for T1 imaging, it is expected to perform ok on diffusion MRI data, but might oversmooth some regions and leave others un-denoised for spatially varying noise profiles. Consider using :func:`piesno` to estimate sigma instead if visual inaccuracies are apparent in the denoised result. References ---------- .. [1] Koay, C. G., & Basser, P. J. (2006). Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. Journal of Magnetic Resonance), 179(2), 317-22. .. [2] Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C., 2008. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Trans. Med. Imaging 27, 425-41. """ k = np.zeros((3, 3, 3), dtype=np.int8) k[0, 1, 1] = 1 k[2, 1, 1] = 1 k[1, 0, 1] = 1 k[1, 2, 1] = 1 k[1, 1, 0] = 1 k[1, 1, 2] = 1 k = cp.asarray(k) # Precomputed factor from Koay 2006, this corrects the bias of magnitude # image correction_factor = { 0: 1, # No correction 1: 0.42920367320510366, 4: 0.4834941393603609, 6: 0.4891759468548269, 8: 0.49195420135894175, 12: 0.4946862482541263, 16: 0.4960339908122364, 20: 0.4968365823718557, 24: 0.49736907650825657, 32: 0.49803177052530145, 64: 0.49901964176235936, } if N in correction_factor: factor = correction_factor[N] else: raise ValueError("N = {0} is not supported! Please choose amongst \ {1}".format(N, sorted(list(correction_factor.keys())))) if arr.ndim == 3: arr = arr[..., None] elif arr.ndim != 4: raise ValueError("Array shape is not supported!", arr.shape) if disable_background_masking: mask = None else: mask = arr[..., 0].astype(np.bool) # TODO: make upstream PR at dipy with this binary erosion bug fix # erode mask by the convolution kernel shape mask = ndi.binary_erosion(mask, structure=cp.ones(k.shape[:3], dtype=np.bool)) # TODO: make upstream PR at dipy that avoids an explicit loop over slices conv_out = cp.empty(arr.shape, dtype=np.float64) ndi.convolve(arr, k[..., np.newaxis], output=conv_out) mean_block = arr - conv_out / 6 if mask is None: tmp = mean_block.reshape((-1, mean_block.shape[-1])) else: tmp = mean_block[mask] tmp *= math.sqrt(6 / 7) tmp *= tmp sigma = cp.sqrt(cp.mean(tmp, axis=0) / factor) return sigma
def perimeter_crofton(image, directions=4): """Calculate total Crofton perimeter of all objects in binary image. Parameters ---------- image : (N, M) ndarray 2D image. If image is not binary, all values strictly greater than zero are considered as the object. directions : 2 or 4, optional Number of directions used to approximate the Crofton perimeter. By default, 4 is used: it should be more accurate than 2. Computation time is the same in both cases. Returns ------- perimeter : float Total perimeter of all objects in binary image. Notes ----- This measure is based on Crofton formula [1], which is a measure from integral geometry. It is defined for general curve length evaluation via a double integral along all directions. In a discrete space, 2 or 4 directions give a quite good approximation, 4 being more accurate than 2 for more complex shapes. Similar to :func:`~.measure.perimeter`, this function returns an approximation of the perimeter in continuous space. References ---------- .. [1] https://en.wikipedia.org/wiki/Crofton_formula .. [2] S. Rivollier. Analyse d’image geometrique et morphometrique par diagrammes de forme et voisinages adaptatifs generaux. PhD thesis, 2010. Ecole Nationale Superieure des Mines de Saint-Etienne. https://tel.archives-ouvertes.fr/tel-00560838 """ if image.ndim != 2: raise NotImplementedError( "`perimeter_crofton` supports 2D images only") # as image could be a label image, transform it to binary image image = (image > 0).astype(cp.uint8) image = cp.pad(image, pad_width=1, mode="constant") XF = ndi.convolve( image, cp.array([[0, 0, 0], [0, 1, 4], [0, 2, 8]]), mode="constant", cval=0, ) h = cp.bincount(XF.ravel(), minlength=16) # definition of the LUT # fmt: off if directions == 2: coefs = [ 0, np.pi / 2, 0, 0, 0, np.pi / 2, 0, 0, np.pi / 2, np.pi, 0, 0, np.pi / 2, np.pi, 0, 0 ] else: sq2 = math.sqrt(2) coefs = [ 0, np.pi / 4 * (1 + 1 / sq2), np.pi / (4 * sq2), np.pi / (2 * sq2), 0, np.pi / 4 * (1 + 1 / sq2), 0, np.pi / (4 * sq2), np.pi / 4, np.pi / 2, np.pi / (4 * sq2), np.pi / (4 * sq2), np.pi / 4, np.pi / 2, 0, 0 ] # fmt: on total_perimeter = cp.asarray(coefs) @ h return total_perimeter
def perimeter(image, neighbourhood=4): """Calculate total perimeter of all objects in binary image. Parameters ---------- image : (N, M) ndarray 2D binary image. neighbourhood : 4 or 8, optional Neighborhood connectivity for border pixel determination. It is used to compute the contour. A higher neighbourhood widens the border on which the perimeter is computed. Returns ------- perimeter : float Total perimeter of all objects in binary image. References ---------- .. [1] K. Benkrid, D. Crookes. Design and FPGA Implementation of a Perimeter Estimator. The Queen's University of Belfast. http://www.cs.qub.ac.uk/~d.crookes/webpubs/papers/perimeter.doc Examples -------- >>> from skimage import data, util >>> from skimage.measure import label >>> # coins image (binary) >>> img_coins = data.coins() > 110 >>> # total perimeter of all objects in the image >>> perimeter(img_coins, neighbourhood=4) # doctest: +ELLIPSIS 7796.867... >>> perimeter(img_coins, neighbourhood=8) # doctest: +ELLIPSIS 8806.268... """ if image.ndim != 2: raise NotImplementedError("`perimeter` supports 2D images only") if neighbourhood == 4: strel = STREL_4 else: strel = STREL_8 strel = cp.asarray(strel) image = image.astype(cp.uint8) eroded_image = ndi.binary_erosion(image, strel, border_value=0) border_image = image - eroded_image perimeter_weights = cp.zeros(50, dtype=cp.double) perimeter_weights[[5, 7, 15, 17, 25, 27]] = 1 perimeter_weights[[21, 33]] = math.sqrt(2) perimeter_weights[[13, 23]] = (1 + math.sqrt(2)) / 2 perimeter_image = ndi.convolve( border_image, cp.array([[10, 2, 10], [2, 1, 2], [10, 2, 10]]), mode="constant", cval=0, ) # You can also write # return perimeter_weights[perimeter_image].sum() # but that was measured as taking much longer than bincount + cp.dot (5x # as much time) perimeter_histogram = cp.bincount(perimeter_image.ravel(), minlength=50) total_perimeter = perimeter_histogram @ perimeter_weights return total_perimeter
def euler_number(image, connectivity=None): """Calculate the Euler characteristic in binary image. For 2D objects, the Euler number is the number of objects minus the number of holes. For 3D objects, the Euler number is obtained as the number of objects plus the number of holes, minus the number of tunnels, or loops. Parameters ---------- image: (N, M) ndarray or (N, M, D) ndarray. 2D or 3D images. If image is not binary, all values strictly greater than zero are considered as the object. connectivity : int, optional Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If ``None``, a full connectivity of ``input.ndim`` is used. 4 or 8 neighborhoods are defined for 2D images (connectivity 1 and 2, respectively). 6 or 26 neighborhoods are defined for 3D images, (connectivity 1 and 3, respectively). Connectivity 2 is not defined. Returns ------- euler_number : int Euler characteristic of the set of all objects in the image. Notes ----- The Euler characteristic is an integer number that describes the topology of the set of all objects in the input image. If object is 4-connected, then background is 8-connected, and conversely. The computation of the Euler characteristic is based on an integral geometry formula in discretized space. In practice, a neighbourhood configuration is constructed, and a LUT is applied for each configuration. The coefficients used are the ones of Ohser et al. It can be useful to compute the Euler characteristic for several connectivities. A large relative difference between results for different connectivities suggests that the image resolution (with respect to the size of objects and holes) is too low. References ---------- .. [1] S. Rivollier. Analyse d’image geometrique et morphometrique par diagrammes de forme et voisinages adaptatifs generaux. PhD thesis, 2010. Ecole Nationale Superieure des Mines de Saint-Etienne. https://tel.archives-ouvertes.fr/tel-00560838 .. [2] Ohser J., Nagel W., Schladitz K. (2002) The Euler Number of Discretized Sets - On the Choice of Adjacency in Homogeneous Lattices. In: Mecke K., Stoyan D. (eds) Morphology of Condensed Matter. Lecture Notes in Physics, vol 600. Springer, Berlin, Heidelberg. Examples -------- >>> import numpy as np >>> SAMPLE = np.zeros((100,100,100)); >>> SAMPLE[40:60, 40:60, 40:60]=1 >>> euler_number(SAMPLE) # doctest: +ELLIPSIS 1... >>> SAMPLE[45:55,45:55,45:55] = 0; >>> euler_number(SAMPLE) # doctest: +ELLIPSIS 2... >>> SAMPLE = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], ... [1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0], ... [0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1], ... [0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]]) >>> euler_number(SAMPLE) # doctest: 0 >>> euler_number(SAMPLE, connectivity=1) # doctest: 2 """ # noqa # as image can be a label image, transform it to binary image = (image > 0).astype(int) image = cp.pad(image, pad_width=1, mode="constant") # check connectivity if connectivity is None: connectivity = image.ndim # config variable is an adjacency configuration. A coefficient given by # variable coefs is attributed to each configuration in order to get # the Euler characteristic. if image.ndim == 2: config = cp.array([[0, 0, 0], [0, 1, 4], [0, 2, 8]]) if connectivity == 1: coefs = EULER_COEFS2D_4 else: coefs = EULER_COEFS2D_8 bins = 16 else: # 3D images if connectivity == 2: raise NotImplementedError( "For 3D images, Euler number is implemented " "for connectivities 1 and 3 only") # fmt: off config = cp.array([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 4], [0, 2, 8]], [[0, 0, 0], [0, 16, 64], [0, 32, 128]]]) # fmt: on if connectivity == 1: coefs = EULER_COEFS3D_26[::-1] else: coefs = EULER_COEFS3D_26 bins = 256 # XF has values in the 0-255 range in 3D, and in the 0-15 range in 2D, # with one unique value for each binary configuration of the # 27-voxel cube in 3D / 8-pixel square in 2D, up to symmetries XF = ndi.convolve(image, config, mode="constant", cval=0) h = cp.bincount(XF.ravel(), minlength=bins) coefs = cp.asarray(coefs) if image.ndim == 2: return coefs @ h else: return int(0.125 * coefs @ h)
def fftconvolve(arr1, arr2): #return cpx.scipy.signal.convolve(arr1, arr2) return ndimage.convolve(arr1, arr2)