Example #1
0
    def run(self):
        Logger.log(
            "d", "Processing new layer for build plate %s..." %
            self._build_plate_number)
        start_time = time()
        view = Application.getInstance().getController().getActiveView()
        if view.getPluginId() == "SimulationView":
            view.resetLayerData()
            self._progress_message.show()
            Job.yieldThread()
            if self._abort_requested:
                if self._progress_message:
                    self._progress_message.hide()
                return

        Application.getInstance().getController().activeViewChanged.connect(
            self._onActiveViewChanged)

        # The no_setting_override is here because adding the SettingOverrideDecorator will trigger a reslice
        new_node = CuraSceneNode(no_setting_override=True)
        new_node.addDecorator(BuildPlateDecorator(self._build_plate_number))

        # Force garbage collection.
        # For some reason, Python has a tendency to keep the layer data
        # in memory longer than needed. Forcing the GC to run here makes
        # sure any old layer data is really cleaned up before adding new.
        gc.collect()

        mesh = MeshData()
        layer_data = LayerDataBuilder.LayerDataBuilder()
        layer_count = len(self._layers)

        # Find the minimum layer number
        # When disabling the remove empty first layers setting, the minimum layer number will be a positive
        # value. In that case the first empty layers will be discarded and start processing layers from the
        # first layer with data.
        # When using a raft, the raft layers are sent as layers < 0. Instead of allowing layers < 0, we
        # simply offset all other layers so the lowest layer is always 0. It could happens that the first
        # raft layer has value -8 but there are just 4 raft (negative) layers.
        min_layer_number = sys.maxsize
        negative_layers = 0
        for layer in self._layers:
            if layer.repeatedMessageCount("path_segment") > 0:
                if layer.id < min_layer_number:
                    min_layer_number = layer.id
                if layer.id < 0:
                    negative_layers += 1

        current_layer = 0

        for layer in self._layers:
            # If the layer is below the minimum, it means that there is no data, so that we don't create a layer
            # data. However, if there are empty layers in between, we compute them.
            if layer.id < min_layer_number:
                continue

            # Layers are offset by the minimum layer number. In case the raft (negative layers) is being used,
            # then the absolute layer number is adjusted by removing the empty layers that can be in between raft
            # and the model
            abs_layer_number = layer.id - min_layer_number
            if layer.id >= 0 and negative_layers != 0:
                abs_layer_number += (min_layer_number + negative_layers)

            layer_data.addLayer(abs_layer_number)
            this_layer = layer_data.getLayer(abs_layer_number)
            layer_data.setLayerHeight(abs_layer_number, layer.height)
            layer_data.setLayerThickness(abs_layer_number, layer.thickness)

            for p in range(layer.repeatedMessageCount("path_segment")):
                polygon = layer.getRepeatedMessage("path_segment", p)

                extruder = polygon.extruder

                line_types = numpy.fromstring(
                    polygon.line_type,
                    dtype="u1")  # Convert bytearray to numpy array

                line_types = line_types.reshape((-1, 1))

                points = numpy.fromstring(
                    polygon.points,
                    dtype="f4")  # Convert bytearray to numpy array
                if polygon.point_type == 0:  # Point2D
                    points = points.reshape(
                        (-1, 2)
                    )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.
                else:  # Point3D
                    points = points.reshape((-1, 3))

                line_widths = numpy.fromstring(
                    polygon.line_width,
                    dtype="f4")  # Convert bytearray to numpy array
                line_widths = line_widths.reshape(
                    (-1, 1)
                )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                line_thicknesses = numpy.fromstring(
                    polygon.line_thickness,
                    dtype="f4")  # Convert bytearray to numpy array
                line_thicknesses = line_thicknesses.reshape(
                    (-1, 1)
                )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                line_feedrates = numpy.fromstring(
                    polygon.line_feedrate,
                    dtype="f4")  # Convert bytearray to numpy array
                line_feedrates = line_feedrates.reshape(
                    (-1, 1)
                )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                # Create a new 3D-array, copy the 2D points over and insert the right height.
                # This uses manual array creation + copy rather than numpy.insert since this is
                # faster.
                new_points = numpy.empty((len(points), 3), numpy.float32)
                if polygon.point_type == 0:  # Point2D
                    new_points[:, 0] = points[:, 0]
                    new_points[:,
                               1] = layer.height / 1000  # layer height value is in backend representation
                    new_points[:, 2] = -points[:, 1]
                else:  # Point3D
                    new_points[:, 0] = points[:, 0]
                    new_points[:, 1] = points[:, 2]
                    new_points[:, 2] = -points[:, 1]

                this_poly = LayerPolygon.LayerPolygon(extruder, line_types,
                                                      new_points, line_widths,
                                                      line_thicknesses,
                                                      line_feedrates)
                this_poly.buildCache()

                this_layer.polygons.append(this_poly)

                Job.yieldThread()
            Job.yieldThread()
            current_layer += 1
            progress = (current_layer / layer_count) * 99
            # TODO: Rebuild the layer data mesh once the layer has been processed.
            # This needs some work in LayerData so we can add the new layers instead of recreating the entire mesh.

            if self._abort_requested:
                if self._progress_message:
                    self._progress_message.hide()
                return
            if self._progress_message:
                self._progress_message.setProgress(progress)

        # We are done processing all the layers we got from the engine, now create a mesh out of the data

        # Find out colors per extruder
        global_container_stack = Application.getInstance(
        ).getGlobalContainerStack()
        manager = ExtruderManager.getInstance()
        extruders = manager.getActiveExtruderStacks()
        if extruders:
            material_color_map = numpy.zeros((len(extruders), 4),
                                             dtype=numpy.float32)
            for extruder in extruders:
                position = int(
                    extruder.getMetaDataEntry("position", default="0"))
                try:
                    default_color = ExtrudersModel.defaultColors[position]
                except IndexError:
                    default_color = "#e0e000"
                color_code = extruder.material.getMetaDataEntry(
                    "color_code", default=default_color)
                color = colorCodeToRGBA(color_code)
                material_color_map[position, :] = color
        else:
            # Single extruder via global stack.
            material_color_map = numpy.zeros((1, 4), dtype=numpy.float32)
            color_code = global_container_stack.material.getMetaDataEntry(
                "color_code", default="#e0e000")
            color = colorCodeToRGBA(color_code)
            material_color_map[0, :] = color

        # We have to scale the colors for compatibility mode
        if OpenGLContext.isLegacyOpenGL() or bool(
                Application.getInstance().getPreferences().getValue(
                    "view/force_layer_view_compatibility_mode")):
            line_type_brightness = 0.5  # for compatibility mode
        else:
            line_type_brightness = 1.0
        layer_mesh = layer_data.build(material_color_map, line_type_brightness)

        if self._abort_requested:
            if self._progress_message:
                self._progress_message.hide()
            return

        # Add LayerDataDecorator to scene node to indicate that the node has layer data
        decorator = LayerDataDecorator.LayerDataDecorator()
        decorator.setLayerData(layer_mesh)
        new_node.addDecorator(decorator)

        new_node.setMeshData(mesh)
        # Set build volume as parent, the build volume can move as a result of raft settings.
        # It makes sense to set the build volume as parent: the print is actually printed on it.
        new_node_parent = Application.getInstance().getBuildVolume()
        new_node.setParent(
            new_node_parent)  # Note: After this we can no longer abort!

        settings = Application.getInstance().getGlobalContainerStack()
        if not settings.getProperty("machine_center_is_zero", "value"):
            new_node.setPosition(
                Vector(-settings.getProperty("machine_width", "value") / 2,
                       0.0,
                       settings.getProperty("machine_depth", "value") / 2))

        if self._progress_message:
            self._progress_message.setProgress(100)

        if self._progress_message:
            self._progress_message.hide()

        # Clear the unparsed layers. This saves us a bunch of memory if the Job does not get destroyed.
        self._layers = None

        Logger.log("d", "Processing layers took %s seconds",
                   time() - start_time)
Example #2
0
    def run(self):
        start_time = time()
        if Application.getInstance().getController().getActiveView(
        ).getPluginId() == "LayerView":
            self._progress = Message(
                catalog.i18nc("@info:status", "Processing Layers"), 0, False,
                -1)
            self._progress.show()
            Job.yieldThread()
            if self._abort_requested:
                if self._progress:
                    self._progress.hide()
                return

        Application.getInstance().getController().activeViewChanged.connect(
            self._onActiveViewChanged)

        new_node = SceneNode()

        ## Remove old layer data (if any)
        for node in DepthFirstIterator(self._scene.getRoot()):
            if type(node) is SceneNode and node.getMeshData():
                if node.callDecoration("getLayerData"):
                    self._scene.getRoot().removeChild(node)
            Job.yieldThread()
            if self._abort_requested:
                if self._progress:
                    self._progress.hide()
                return

        mesh = MeshData()
        layer_data = LayerDataBuilder.LayerDataBuilder()
        layer_count = len(self._layers)

        # Find the minimum layer number
        # When using a raft, the raft layers are sent as layers < 0. Instead of allowing layers < 0, we
        # instead simply offset all other layers so the lowest layer is always 0.
        min_layer_number = 0
        for layer in self._layers:
            if (layer.id < min_layer_number):
                min_layer_number = layer.id

        current_layer = 0

        for layer in self._layers:
            abs_layer_number = layer.id + abs(min_layer_number)

            layer_data.addLayer(abs_layer_number)
            this_layer = layer_data.getLayer(abs_layer_number)
            layer_data.setLayerHeight(abs_layer_number, layer.height)
            layer_data.setLayerThickness(abs_layer_number, layer.thickness)

            for p in range(layer.repeatedMessageCount("path_segment")):
                polygon = layer.getRepeatedMessage("path_segment", p)

                extruder = polygon.extruder

                line_types = numpy.fromstring(
                    polygon.line_type,
                    dtype="u1")  # Convert bytearray to numpy array
                line_types = line_types.reshape((-1, 1))

                points = numpy.fromstring(
                    polygon.points,
                    dtype="f4")  # Convert bytearray to numpy array
                if polygon.point_type == 0:  # Point2D
                    points = points.reshape(
                        (-1, 2)
                    )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.
                else:  # Point3D
                    points = points.reshape((-1, 3))

                line_widths = numpy.fromstring(
                    polygon.line_width,
                    dtype="f4")  # Convert bytearray to numpy array
                line_widths = line_widths.reshape(
                    (-1, 1)
                )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                # Create a new 3D-array, copy the 2D points over and insert the right height.
                # This uses manual array creation + copy rather than numpy.insert since this is
                # faster.
                new_points = numpy.empty((len(points), 3), numpy.float32)
                if polygon.point_type == 0:  # Point2D
                    new_points[:, 0] = points[:, 0]
                    new_points[:,
                               1] = layer.height / 1000  # layer height value is in backend representation
                    new_points[:, 2] = -points[:, 1]
                else:  # Point3D
                    new_points[:, 0] = points[:, 0]
                    new_points[:, 1] = points[:, 2]
                    new_points[:, 2] = -points[:, 1]

                this_poly = LayerPolygon.LayerPolygon(layer_data, extruder,
                                                      line_types, new_points,
                                                      line_widths)
                this_poly.buildCache()

                this_layer.polygons.append(this_poly)

                Job.yieldThread()
            Job.yieldThread()
            current_layer += 1
            progress = (current_layer / layer_count) * 99
            # TODO: Rebuild the layer data mesh once the layer has been processed.
            # This needs some work in LayerData so we can add the new layers instead of recreating the entire mesh.

            if self._abort_requested:
                if self._progress:
                    self._progress.hide()
                return
            if self._progress:
                self._progress.setProgress(progress)

        # We are done processing all the layers we got from the engine, now create a mesh out of the data
        layer_mesh = layer_data.build()

        if self._abort_requested:
            if self._progress:
                self._progress.hide()
            return

        # Add LayerDataDecorator to scene node to indicate that the node has layer data
        decorator = LayerDataDecorator.LayerDataDecorator()
        decorator.setLayerData(layer_mesh)
        new_node.addDecorator(decorator)

        new_node.setMeshData(mesh)
        # Set build volume as parent, the build volume can move as a result of raft settings.
        # It makes sense to set the build volume as parent: the print is actually printed on it.
        new_node_parent = Application.getInstance().getBuildVolume()
        new_node.setParent(
            new_node_parent)  # Note: After this we can no longer abort!

        settings = Application.getInstance().getGlobalContainerStack()
        if not settings.getProperty("machine_center_is_zero", "value"):
            new_node.setPosition(
                Vector(-settings.getProperty("machine_width", "value") / 2,
                       0.0,
                       settings.getProperty("machine_depth", "value") / 2))

        if self._progress:
            self._progress.setProgress(100)

        view = Application.getInstance().getController().getActiveView()
        if view.getPluginId() == "LayerView":
            view.resetLayerData()

        if self._progress:
            self._progress.hide()

        # Clear the unparsed layers. This saves us a bunch of memory if the Job does not get destroyed.
        self._layers = None

        Logger.log("d", "Processing layers took %s seconds",
                   time() - start_time)
Example #3
0
    def run(self):
        start_time = time()
        if Application.getInstance().getController().getActiveView().getPluginId() == "LayerView":
            self._progress = Message(catalog.i18nc("@info:status", "Processing Layers"), 0, False, -1)
            self._progress.show()
            Job.yieldThread()
            if self._abort_requested:
                if self._progress:
                    self._progress.hide()
                return

        Application.getInstance().getController().activeViewChanged.connect(self._onActiveViewChanged)

        new_node = SceneNode()

        ## Remove old layer data (if any)
        for node in DepthFirstIterator(self._scene.getRoot()):
            if node.callDecoration("getLayerData"):
                node.getParent().removeChild(node)
                break
            if self._abort_requested:
                if self._progress:
                    self._progress.hide()
                return

        # Force garbage collection.
        # For some reason, Python has a tendency to keep the layer data
        # in memory longer than needed. Forcing the GC to run here makes
        # sure any old layer data is really cleaned up before adding new.
        gc.collect()

        mesh = MeshData()
        layer_data = LayerDataBuilder.LayerDataBuilder()
        layer_count = len(self._layers)

        # Find the minimum layer number
        # When using a raft, the raft layers are sent as layers < 0. Instead of allowing layers < 0, we
        # instead simply offset all other layers so the lowest layer is always 0.
        min_layer_number = 0
        for layer in self._layers:
            if layer.id < min_layer_number:
                min_layer_number = layer.id

        current_layer = 0

        for layer in self._layers:
            abs_layer_number = layer.id + abs(min_layer_number)

            layer_data.addLayer(abs_layer_number)
            this_layer = layer_data.getLayer(abs_layer_number)
            layer_data.setLayerHeight(abs_layer_number, layer.height)

            for p in range(layer.repeatedMessageCount("path_segment")):
                polygon = layer.getRepeatedMessage("path_segment", p)

                extruder = polygon.extruder

                line_types = numpy.fromstring(polygon.line_type, dtype="u1")  # Convert bytearray to numpy array
                line_types = line_types.reshape((-1,1))

                points = numpy.fromstring(polygon.points, dtype="f4")  # Convert bytearray to numpy array
                if polygon.point_type == 0: # Point2D
                    points = points.reshape((-1,2))  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.
                else:  # Point3D
                    points = points.reshape((-1,3))

                line_widths = numpy.fromstring(polygon.line_width, dtype="f4")  # Convert bytearray to numpy array
                line_widths = line_widths.reshape((-1,1))  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                # In the future, line_thicknesses should be given by CuraEngine as well.
                # Currently the infill layer thickness also translates to line width
                line_thicknesses = numpy.zeros(line_widths.shape, dtype="f4")
                line_thicknesses[:] = layer.thickness / 1000  # from micrometer to millimeter

                # Create a new 3D-array, copy the 2D points over and insert the right height.
                # This uses manual array creation + copy rather than numpy.insert since this is
                # faster.
                new_points = numpy.empty((len(points), 3), numpy.float32)
                if polygon.point_type == 0:  # Point2D
                    new_points[:, 0] = points[:, 0]
                    new_points[:, 1] = layer.height / 1000  # layer height value is in backend representation
                    new_points[:, 2] = -points[:, 1]
                else: # Point3D
                    new_points[:, 0] = points[:, 0]
                    new_points[:, 1] = points[:, 2]
                    new_points[:, 2] = -points[:, 1]

                this_poly = LayerPolygon.LayerPolygon(extruder, line_types, new_points, line_widths, line_thicknesses)
                this_poly.buildCache()

                this_layer.polygons.append(this_poly)

                Job.yieldThread()
            Job.yieldThread()
            current_layer += 1
            progress = (current_layer / layer_count) * 99
            # TODO: Rebuild the layer data mesh once the layer has been processed.
            # This needs some work in LayerData so we can add the new layers instead of recreating the entire mesh.

            if self._abort_requested:
                if self._progress:
                    self._progress.hide()
                return
            if self._progress:
                self._progress.setProgress(progress)

        # We are done processing all the layers we got from the engine, now create a mesh out of the data

        # Find out colors per extruder
        global_container_stack = Application.getInstance().getGlobalContainerStack()
        manager = ExtruderManager.getInstance()
        extruders = list(manager.getMachineExtruders(global_container_stack.getId()))
        if extruders:
            material_color_map = numpy.zeros((len(extruders), 4), dtype=numpy.float32)
            for extruder in extruders:
                position = int(extruder.getMetaDataEntry("position", default="0"))  # Get the position
                try:
                    default_color = ExtrudersModel.defaultColors[position]
                except KeyError:
                    default_color = "#e0e000"
                color_code = extruder.material.getMetaDataEntry("color_code", default=default_color)
                color = colorCodeToRGBA(color_code)
                material_color_map[position, :] = color
        else:
            # Single extruder via global stack.
            material_color_map = numpy.zeros((1, 4), dtype=numpy.float32)
            color_code = global_container_stack.material.getMetaDataEntry("color_code", default="#e0e000")
            color = colorCodeToRGBA(color_code)
            material_color_map[0, :] = color

        # We have to scale the colors for compatibility mode
        if OpenGLContext.isLegacyOpenGL() or bool(Preferences.getInstance().getValue("view/force_layer_view_compatibility_mode")):
            line_type_brightness = 0.5  # for compatibility mode
        else:
            line_type_brightness = 1.0
        layer_mesh = layer_data.build(material_color_map, line_type_brightness)

        if self._abort_requested:
            if self._progress:
                self._progress.hide()
            return

        # Add LayerDataDecorator to scene node to indicate that the node has layer data
        decorator = LayerDataDecorator.LayerDataDecorator()
        decorator.setLayerData(layer_mesh)
        new_node.addDecorator(decorator)

        new_node.setMeshData(mesh)
        # Set build volume as parent, the build volume can move as a result of raft settings.
        # It makes sense to set the build volume as parent: the print is actually printed on it.
        new_node_parent = Application.getInstance().getBuildVolume()
        new_node.setParent(new_node_parent)  # Note: After this we can no longer abort!

        settings = Application.getInstance().getGlobalContainerStack()
        if not settings.getProperty("machine_center_is_zero", "value"):
            new_node.setPosition(Vector(-settings.getProperty("machine_width", "value") / 2, 0.0, settings.getProperty("machine_depth", "value") / 2))

        if self._progress:
            self._progress.setProgress(100)

        view = Application.getInstance().getController().getActiveView()
        if view.getPluginId() == "LayerView":
            view.resetLayerData()

        if self._progress:
            self._progress.hide()

        # Clear the unparsed layers. This saves us a bunch of memory if the Job does not get destroyed.
        self._layers = None

        Logger.log("d", "Processing layers took %s seconds", time() - start_time)
Example #4
0
    def run(self):
        Logger.log(
            "d", "Processing new layer for build plate %s..." %
            self._build_plate_number)
        start_time = time()
        view = Application.getInstance().getController().getActiveView()
        if view.getPluginId() == "SimulationView":
            view.resetLayerData()
            self._progress_message.show()
            Job.yieldThread()
            if self._abort_requested:
                if self._progress_message:
                    self._progress_message.hide()
                return

        Application.getInstance().getController().activeViewChanged.connect(
            self._onActiveViewChanged)

        # The no_setting_override is here because adding the SettingOverrideDecorator will trigger a reslice
        new_node = CuraSceneNode(no_setting_override=True)
        new_node.addDecorator(BuildPlateDecorator(self._build_plate_number))

        # Force garbage collection.
        # For some reason, Python has a tendency to keep the layer data
        # in memory longer than needed. Forcing the GC to run here makes
        # sure any old layer data is really cleaned up before adding new.
        gc.collect()

        mesh = MeshData()
        layer_data = LayerDataBuilder.LayerDataBuilder()
        layer_count = len(self._layers)

        # Find the minimum layer number
        # When using a raft, the raft layers are sent as layers < 0. Instead of allowing layers < 0, we
        # instead simply offset all other layers so the lowest layer is always 0. It could happens that
        # the first raft layer has value -8 but there are just 4 raft (negative) layers.
        min_layer_number = 0
        negative_layers = 0
        for layer in self._layers:
            if layer.id < min_layer_number:
                min_layer_number = layer.id
            if layer.id < 0:
                negative_layers += 1

        current_layer = 0

        for layer in self._layers:
            # Negative layers are offset by the minimum layer number, but the positive layers are just
            # offset by the number of negative layers so there is no layer gap between raft and model
            abs_layer_number = layer.id + abs(
                min_layer_number
            ) if layer.id < 0 else layer.id + negative_layers

            layer_data.addLayer(abs_layer_number)
            this_layer = layer_data.getLayer(abs_layer_number)
            layer_data.setLayerHeight(abs_layer_number, layer.height)
            layer_data.setLayerThickness(abs_layer_number, layer.thickness)

            for p in range(layer.repeatedMessageCount("path_segment")):
                polygon = layer.getRepeatedMessage("path_segment", p)

                extruder = polygon.extruder

                line_types = numpy.fromstring(
                    polygon.line_type,
                    dtype="u1")  # Convert bytearray to numpy array
                line_types = line_types.reshape((-1, 1))

                points = numpy.fromstring(
                    polygon.points,
                    dtype="f4")  # Convert bytearray to numpy array
                if polygon.point_type == 0:  # Point2D
                    points = points.reshape(
                        (-1, 2)
                    )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.
                else:  # Point3D
                    points = points.reshape((-1, 3))

                line_widths = numpy.fromstring(
                    polygon.line_width,
                    dtype="f4")  # Convert bytearray to numpy array
                line_widths = line_widths.reshape(
                    (-1, 1)
                )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                line_thicknesses = numpy.fromstring(
                    polygon.line_thickness,
                    dtype="f4")  # Convert bytearray to numpy array
                line_thicknesses = line_thicknesses.reshape(
                    (-1, 1)
                )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                line_feedrates = numpy.fromstring(
                    polygon.line_feedrate,
                    dtype="f4")  # Convert bytearray to numpy array
                line_feedrates = line_feedrates.reshape(
                    (-1, 1)
                )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.

                global_container_stack = Application.getInstance(
                ).getGlobalContainerStack()
                half_outer_wall_thickness = global_container_stack.getProperty(
                    "wall_line_width_0", "value") / 2

                # Adjust layer data to show Raft line type, if it is enabled
                if global_container_stack.getProperty("blackbelt_raft",
                                                      "value"):
                    raft_thickness = global_container_stack.getProperty(
                        "blackbelt_raft_thickness", "value")

                    extrusion_started = False
                    for index, segment_type in enumerate(line_types):
                        if points[index + 1][
                                1] <= half_outer_wall_thickness + raft_thickness:
                            if segment_type in [
                                    LayerPolygon.LayerPolygon.Inset0Type,
                                    LayerPolygon.LayerPolygon.InsetXType
                            ]:
                                line_types[
                                    index] = LayerPolygon.LayerPolygon.SkirtType
                                extrusion_started = True
                            elif extrusion_started:
                                break

                # Adjust layer data to show Belt Wall feed rate, if it is enabled
                if global_container_stack.getProperty(
                        "blackbelt_belt_wall_enabled", "value"):
                    belt_wall_feedrate = global_container_stack.getProperty(
                        "blackbelt_belt_wall_speed", "value")

                    belt_wall_indices = []
                    for index, point in enumerate(points):
                        if point[1] <= half_outer_wall_thickness:
                            if last_point_hit_wall and line_feedrates[
                                    index - 1] > belt_wall_feedrate:
                                belt_wall_indices.append(index)
                            last_point_hit_wall = True
                        else:
                            last_point_hit_wall = False

                    dimensionality = points.shape[1]
                    edited_points = points.flatten()
                    line_types = line_types.flatten()
                    line_widths = line_widths.flatten()
                    line_thicknesses = line_thicknesses.flatten()
                    line_feedrates = line_feedrates.flatten()
                    for index in reversed(belt_wall_indices):
                        edited_points = numpy.insert(
                            edited_points, dimensionality * (index),
                            numpy.append(points[index - 1], points[index]))
                        line_types = numpy.insert(line_types, index,
                                                  [line_types[index - 1]] * 2)
                        line_widths = numpy.insert(
                            line_widths, index, [line_widths[index - 1]] * 2)
                        line_thicknesses = numpy.insert(
                            line_thicknesses, index,
                            [line_thicknesses[index - 1]] * 2)
                        line_feedrates = numpy.insert(line_feedrates,
                                                      index - 1,
                                                      [belt_wall_feedrate] * 2)

                    # Fix shape of adjusted data
                    if polygon.point_type == 0:
                        points = edited_points.reshape(
                            (-1, 2)
                        )  # We get a linear list of pairs that make up the points, so make numpy interpret them correctly.
                    else:
                        points = edited_points.reshape((-1, 3))

                    line_types = line_types.reshape((-1, 1))
                    line_widths = line_widths.reshape((-1, 1))
                    line_thicknesses = line_thicknesses.reshape((-1, 1))
                    line_feedrates = line_feedrates.reshape((-1, 1))

                # Create a new 3D-array, copy the 2D points over and insert the right height.
                # This uses manual array creation + copy rather than numpy.insert since this is
                # faster.
                new_points = numpy.empty((len(points), 3), numpy.float32)
                if polygon.point_type == 0:  # Point2D
                    new_points[:, 0] = points[:, 0]
                    new_points[:,
                               1] = layer.height / 1000  # layer height value is in backend representation
                    new_points[:, 2] = -points[:, 1]
                else:  # Point3D
                    new_points[:, 0] = points[:, 0]
                    new_points[:, 1] = points[:, 2]
                    new_points[:, 2] = -points[:, 1]

                this_poly = LayerPolygon.LayerPolygon(extruder, line_types,
                                                      new_points, line_widths,
                                                      line_thicknesses,
                                                      line_feedrates)
                this_poly.buildCache()

                this_layer.polygons.append(this_poly)

                Job.yieldThread()
            Job.yieldThread()
            current_layer += 1
            progress = (current_layer / layer_count) * 99
            # TODO: Rebuild the layer data mesh once the layer has been processed.
            # This needs some work in LayerData so we can add the new layers instead of recreating the entire mesh.

            if self._abort_requested:
                if self._progress_message:
                    self._progress_message.hide()
                return
            if self._progress_message:
                self._progress_message.setProgress(progress)

        # We are done processing all the layers we got from the engine, now create a mesh out of the data

        # Find out colors per extruder
        global_container_stack = Application.getInstance(
        ).getGlobalContainerStack()
        manager = ExtruderManager.getInstance()
        extruders = list(
            manager.getMachineExtruders(global_container_stack.getId()))
        if extruders:
            material_color_map = numpy.zeros((len(extruders), 4),
                                             dtype=numpy.float32)
            for extruder in extruders:
                position = int(
                    extruder.getMetaDataEntry("position",
                                              default="0"))  # Get the position
                try:
                    default_color = ExtrudersModel.defaultColors[position]
                except IndexError:
                    default_color = "#e0e000"
                color_code = extruder.material.getMetaDataEntry(
                    "color_code", default=default_color)
                color = colorCodeToRGBA(color_code)
                material_color_map[position, :] = color
        else:
            # Single extruder via global stack.
            material_color_map = numpy.zeros((1, 4), dtype=numpy.float32)
            color_code = global_container_stack.material.getMetaDataEntry(
                "color_code", default="#e0e000")
            color = colorCodeToRGBA(color_code)
            material_color_map[0, :] = color

        # We have to scale the colors for compatibility mode
        if OpenGLContext.isLegacyOpenGL() or bool(Preferences.getInstance(
        ).getValue("view/force_layer_view_compatibility_mode")):
            line_type_brightness = 0.5  # for compatibility mode
        else:
            line_type_brightness = 1.0
        layer_mesh = layer_data.build(material_color_map, line_type_brightness)

        if self._abort_requested:
            if self._progress_message:
                self._progress_message.hide()
            return

        # Add LayerDataDecorator to scene node to indicate that the node has layer data
        decorator = LayerDataDecorator.LayerDataDecorator()
        decorator.setLayerData(layer_mesh)
        new_node.addDecorator(decorator)

        new_node.setMeshData(mesh)
        # Set build volume as parent, the build volume can move as a result of raft settings.
        # It makes sense to set the build volume as parent: the print is actually printed on it.
        new_node_parent = Application.getInstance().getBuildVolume()
        new_node.setParent(
            new_node_parent)  # Note: After this we can no longer abort!

        settings = Application.getInstance().getGlobalContainerStack()
        if not settings.getProperty("machine_center_is_zero", "value"):
            new_node.setPosition(
                Vector(-settings.getProperty("machine_width", "value") / 2,
                       0.0,
                       settings.getProperty("machine_depth", "value") / 2))

        transform = self._scene.getRoot().callDecoration("getTransformMatrix")
        if transform and transform != Matrix():
            transform_matrix = new_node.getLocalTransformation().preMultiply(
                transform.getInverse())
            new_node.setTransformation(transform_matrix)
            front_offset = self._scene.getRoot().callDecoration(
                "getSceneFrontOffset")
            if global_container_stack.getProperty("blackbelt_raft", "value"):
                front_offset = front_offset - global_container_stack.getProperty("blackbelt_raft_margin", "value") \
                                            - global_container_stack.getProperty("blackbelt_raft_thickness", "value")
            new_node.translate(Vector(0, 0, front_offset),
                               SceneNode.TransformSpace.World)

        if self._progress_message:
            self._progress_message.setProgress(100)

        if self._progress_message:
            self._progress_message.hide()

        # Clear the unparsed layers. This saves us a bunch of memory if the Job does not get destroyed.
        self._layers = None

        Logger.log("d", "Processing layers took %s seconds",
                   time() - start_time)