def run_task(v): random.seed(v['seed']) np.random.seed(v['seed']) # goal generators logger.log("Initializing the goal generators and the inner env...") inner_env = normalize( PointEnv(dim=v['goal_size'], state_bounds=v['state_bounds'])) # inner_env = normalize(PendulumEnv()) center = np.zeros(v['goal_size']) uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'], bounds=v['goal_range'], center=center) feasible_goal_ub = np.array(v['state_bounds'])[:v['goal_size']] # print("the feasible_goal_ub is: ", feasible_goal_ub) uniform_feasible_goal_generator = UniformStateGenerator( state_size=v['goal_size'], bounds=[-1 * feasible_goal_ub, feasible_goal_ub]) env = GoalExplorationEnv( env=inner_env, goal_generator=uniform_goal_generator, obs2goal_transform=lambda x: x[:int(len(x) / 2)], terminal_eps=v['terminal_eps'], only_feasible=v['only_feasible'], distance_metric=v['distance_metric'], terminate_env=True, goal_weight=v['goal_weight'], ) # this goal_generator will be updated by a uniform after policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=(32, 32), # Fix the variance since different goals will require different variances, making this parameter hard to learn. learn_std=v['learn_std'], adaptive_std=v['adaptive_std'], std_hidden_sizes=(16, 16), output_gain=v['output_gain'], init_std=v['policy_init_std'], ) baseline = LinearFeatureBaseline(env_spec=env.spec) n_traj = 3 logger.log("Initializing report and plot_policy_reward...") log_dir = logger.get_snapshot_dir() inner_log_dir = osp.join(log_dir, 'inner_iters') report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3) report.add_header("{}".format(EXPERIMENT_TYPE)) report.add_text(format_dict(v)) # img = plot_policy_reward( # policy, env, v['goal_range'], # horizon=v['horizon'], grid_size=5, # fname='{}/policy_reward_init.png'.format(log_dir), # ) # report.add_image(img, 'policy performance initialization\n') # GAN logger.log("Instantiating the GAN...") tf_session = tf.Session() gan_configs = {key[4:]: value for key, value in v.items() if 'GAN_' in key} gan = StateGAN( state_size=v['goal_size'], evaluater_size=v['num_labels'], state_range=v['goal_range'], state_noise_level=v['goal_noise_level'], generator_layers=v['gan_generator_layers'], discriminator_layers=v['gan_discriminator_layers'], noise_size=v['gan_noise_size'], tf_session=tf_session, configs=gan_configs, ) final_gen_loss = 11 k = -1 while final_gen_loss > 10: k += 1 gan.gan.initialize() img = plot_gan_samples(gan, v['goal_range'], '{}/start.png'.format(log_dir)) report.add_image(img, 'GAN re-initialized %i' % k) logger.log("pretraining the GAN...") if v['smart_init']: initial_goals = generate_initial_goals(env, policy, v['goal_range'], horizon=v['horizon']) if np.size(initial_goals[0]) == 2: plt.figure() plt.scatter(initial_goals[:, 0], initial_goals[:, 1], marker='x') plt.xlim(-v['goal_range'], v['goal_range']) plt.ylim(-v['goal_range'], v['goal_range']) img = save_image() report.add_image( img, 'goals sampled to pretrain GAN: {}'.format( np.shape(initial_goals))) dis_loss, gen_loss = gan.pretrain( initial_goals, outer_iters=30 # initial_goals, outer_iters=30, generator_iters=10, discriminator_iters=200, ) final_gen_loss = gen_loss logger.log("Loss at the end of {}th trial: {}gen, {}disc".format( k, gen_loss, dis_loss)) else: gan.pretrain_uniform() final_gen_loss = 0 logger.log("Plotting GAN samples") img = plot_gan_samples(gan, v['goal_range'], '{}/start.png'.format(log_dir)) report.add_image( img, 'GAN pretrained %i: %i gen_itr, %i disc_itr' % (k, 10 + k, 200 - k * 10)) # report.add_image(img, 'GAN pretrained %i: %i gen_itr, %i disc_itr' % (k, 10, 200)) report.save() report.new_row() all_goals = StateCollection(v['coll_eps']) logger.log("Starting the outer iterations") for outer_iter in range(v['outer_iters']): logger.log("Outer itr # %i" % outer_iter) # Train GAN logger.log("Sampling goals...") raw_goals, _ = gan.sample_states_with_noise(v['num_new_goals']) if v['replay_buffer'] and outer_iter > 0 and all_goals.size > 0: # sampler uniformly 2000 old goals and add them to the training pool (50/50) old_goals = all_goals.sample(v['num_old_goals']) # print("old_goals: {}, raw_goals: {}".format(old_goals, raw_goals)) goals = np.vstack([raw_goals, old_goals]) else: # print("no goals in all_goals: sample fresh ones") goals = raw_goals logger.log("Evaluating goals before inner training...") rewards_before = None if v['num_labels'] == 3: rewards_before = evaluate_states(goals, env, policy, v['horizon'], n_traj=n_traj) logger.log("Perform TRPO with UniformListStateGenerator...") with ExperimentLogger(inner_log_dir, '_last', snapshot_mode='last', hold_outter_log=True): # set goal generator to uniformly sample from selected all_goals env.update_goal_generator(UniformListStateGenerator( goals.tolist())) algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=v['pg_batch_size'], max_path_length=v['horizon'], n_itr=v['inner_iters'], discount=0.995, step_size=0.01, plot=False, ) algo.train() # logger.log("Plot performance policy on full grid...") # img = plot_policy_reward( # policy, env, v['goal_range'], # horizon=v['horizon'], # max_reward=v['max_reward'], # grid_size=10, # # fname='{}/policy_reward_{}.png'.format(log_config.plot_dir, outer_iter), # ) # report.add_image(img, 'policy performance\n itr: {}'.format(outer_iter)) # report.save() report.add_image(plot_generator_samples(gan, env), 'policy_rewards_{}'.format(outer_iter)) report.add_image(plot_policy_performance(policy, env, v['horizon']), 'gan_samples_{}'.format(outer_iter)) # this re-evaluate the final policy in the collection of goals logger.log( "Generating labels by re-evaluating policy on List of goals...") labels = label_states( goals, env, policy, v['horizon'], min_reward=v['min_reward'], max_reward=v['max_reward'], old_rewards=rewards_before, # improvement_threshold=0, n_traj=n_traj, ) goal_classes, text_labels = convert_label(labels) total_goals = labels.shape[0] goal_class_frac = OrderedDict( ) # this needs to be an ordered dict!! (for the log tabular) for k in text_labels.keys(): frac = np.sum(goal_classes == k) / total_goals logger.record_tabular('GenGoal_frac_' + text_labels[k], frac) goal_class_frac[text_labels[k]] = frac img = plot_labeled_samples( samples=goals, sample_classes=goal_classes, text_labels=text_labels, limit=v['goal_range'] + 1, bounds=env.feasible_goal_space.bounds, # '{}/sampled_goals_{}.png'.format(log_dir, outer_iter), # if i don't give the file it doesn't save ) summary_string = '' for key, value in goal_class_frac.items(): summary_string += key + ' frac: ' + str(value) + '\n' report.add_image(img, 'itr: {}\nLabels of generated goals:\n{}'.format( outer_iter, summary_string), width=500) # log feasibility of generated goals feasible = np.array([ 1 if env.feasible_goal_space.contains(goal) else 0 for goal in goals ], dtype=int) feasibility_rate = np.mean(feasible) logger.record_tabular('GenGoalFeasibilityRate', feasibility_rate) img = plot_labeled_samples( samples=goals, sample_classes=feasible, text_labels={ 0: 'Infeasible', 1: "Feasible" }, markers={ 0: 'v', 1: 'o' }, limit=v['goal_range'] + 1, bounds=env.feasible_goal_space.bounds, # '{}/sampled_goals_{}.png'.format(log_dir, outer_iter), # if i don't give the file it doesn't save ) report.add_image(img, 'feasibility of generated goals: {}\n itr: {}'.format( feasibility_rate, outer_iter), width=500) ###### try single label for good goals if v['num_labels'] == 1: labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1)) logger.log("Training GAN...") gan.train( goals, labels, v['gan_outer_iters'], ) logger.log("Evaluating performance on Unif and Fix Goal Gen...") with logger.tabular_prefix('UnifFeasGoalGen_'): env.update_goal_generator(uniform_feasible_goal_generator) evaluate_goal_env(env, policy=policy, horizon=v['horizon'], n_goals=50, fig_prefix='UnifFeasGoalGen_', report=report, n_traj=n_traj) logger.dump_tabular(with_prefix=False) report.save() report.new_row() # append new goals to list of all goals (replay buffer): Not the low reward ones!! filtered_raw_goals = [ goal for goal, label in zip(goals, labels) if label[0] == 1 ] all_goals.append(filtered_raw_goals)
def run_task(v): random.seed(v['seed']) np.random.seed(v['seed']) # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1] logger.log("Initializing report and plot_policy_reward...") log_dir = logger.get_snapshot_dir() # problem with logger module here!! report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3) report.add_header("{}".format(EXPERIMENT_TYPE)) report.add_text(format_dict(v)) tf_session = tf.Session() inner_env = normalize(AntMazeEnv()) uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'], bounds=v['goal_range'], center=v['goal_center']) env = GoalExplorationEnv( env=inner_env, goal_generator=uniform_goal_generator, obs2goal_transform=lambda x: x[-3:-1], terminal_eps=v['terminal_eps'], distance_metric=v['distance_metric'], extend_dist_rew=v['extend_dist_rew'], only_feasible=v['only_feasible'], terminate_env=True, ) policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=(64, 64), # Fix the variance since different goals will require different variances, making this parameter hard to learn. learn_std=v['learn_std'], adaptive_std=v['adaptive_std'], std_hidden_sizes=(16, 16), # this is only used if adaptive_std is true! output_gain=v['output_gain'], init_std=v['policy_init_std'], ) baseline = LinearFeatureBaseline(env_spec=env.spec) # initialize all logging arrays on itr0 outer_iter = 0 logger.log('Generating the Initial Heatmap...') test_and_plot_policy(policy, env, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'], itr=outer_iter, report=report, limit=v['goal_range'], center=v['goal_center']) # GAN logger.log("Instantiating the GAN...") gan_configs = {key[4:]: value for key, value in v.items() if 'GAN_' in key} for key, value in gan_configs.items(): if value is tf.train.AdamOptimizer: gan_configs[key] = tf.train.AdamOptimizer(gan_configs[key + '_stepSize']) if value is tflearn.initializations.truncated_normal: gan_configs[key] = tflearn.initializations.truncated_normal(stddev=gan_configs[key + '_stddev']) gan = StateGAN( state_size=v['goal_size'], evaluater_size=v['num_labels'], state_range=v['goal_range'], state_center=v['goal_center'], state_noise_level=v['goal_noise_level'], generator_layers=v['gan_generator_layers'], discriminator_layers=v['gan_discriminator_layers'], noise_size=v['gan_noise_size'], tf_session=tf_session, configs=gan_configs, ) logger.log("pretraining the GAN...") if v['smart_init']: feasible_goals = generate_initial_goals(env, policy, v['goal_range'], goal_center=v['goal_center'], horizon=v['horizon']) labels = np.ones((feasible_goals.shape[0], 2)).astype(np.float32) # make them all good goals plot_labeled_states(feasible_goals, labels, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center']) dis_loss, gen_loss = gan.pretrain(states=feasible_goals, outer_iters=v['gan_outer_iters']) print("Loss of Gen and Dis: ", gen_loss, dis_loss) else: gan.pretrain_uniform() # log first samples form the GAN initial_goals, _ = gan.sample_states_with_noise(v['num_new_goals']) logger.log("Labeling the goals") labels = label_states(initial_goals, env, policy, v['horizon'], n_traj=v['n_traj'], key='goal_reached') plot_labeled_states(initial_goals, labels, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center']) report.new_row() all_goals = StateCollection(distance_threshold=v['coll_eps']) for outer_iter in range(1, v['outer_iters']): logger.log("Outer itr # %i" % outer_iter) # Sample GAN logger.log("Sampling goals from the GAN") raw_goals, _ = gan.sample_states_with_noise(v['num_new_goals']) if v['replay_buffer'] and outer_iter > 0 and all_goals.size > 0: old_goals = all_goals.sample(v['num_old_goals']) goals = np.vstack([raw_goals, old_goals]) else: goals = raw_goals # if needed label the goals before any update if v['label_with_variation']: old_labels, old_rewards = label_states(goals, env, policy, v['horizon'], as_goals=True, n_traj=v['n_traj'], key='goal_reached', full_path=False, return_rew=True) # itr_label = outer_iter # use outer_iter to log everything or "last" to log only the last # with ExperimentLogger(log_dir, itr_label, snapshot_mode='last', hold_outter_log=True): with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True): logger.log("Updating the environment goal generator") env.update_goal_generator( UniformListStateGenerator( goals.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'], ) ) logger.log("Training the algorithm") algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=v['pg_batch_size'], max_path_length=v['horizon'], n_itr=v['inner_iters'], step_size=0.01, plot=False, ) trpo_paths = algo.train() if v['use_trpo_paths']: logger.log("labeling starts with trpo rollouts") [goals, labels] = label_states_from_paths(trpo_paths, n_traj=2, key='goal_reached', # using the min n_traj as_goal=True, env=env) paths = [path for paths in trpo_paths for path in paths] elif v['label_with_variation']: labels, paths = label_states(goals, env, policy, v['horizon'], as_goals=True, n_traj=v['n_traj'], key='goal_reached', old_rewards=old_rewards, full_path=True) else: logger.log("labeling starts manually") labels, paths = label_states(goals, env, policy, v['horizon'], as_goals=True, n_traj=v['n_traj'], key='goal_reached', full_path=True) with logger.tabular_prefix("OnStarts_"): env.log_diagnostics(paths) logger.log('Generating the Heatmap...') test_and_plot_policy(policy, env, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'], itr=outer_iter, report=report, limit=v['goal_range'], center=v['goal_center']) #logger.log("Labeling the goals") #labels = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], key='goal_reached') plot_labeled_states(goals, labels, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'], maze_id=v['maze_id']) # ###### extra for deterministic: # logger.log("Labeling the goals deterministic") # with policy.set_std_to_0(): # labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1) # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center']) if v['label_with_variation']: # this will use only the performance variation for labeling labels = np.array(labels[:, -1], dtype=int).reshape((-1, 1)) else: labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1)) logger.log("Training the GAN") gan.train( goals, labels, v['gan_outer_iters'], ) logger.dump_tabular(with_prefix=False) report.new_row() # append new goals to list of all goals (replay buffer): Not the low reward ones!! filtered_raw_goals = [goal for goal, label in zip(goals, labels) if label[0] == 1] all_goals.append(filtered_raw_goals) if v['add_on_policy']: logger.log("sampling on policy") feasible_goals = generate_initial_goals(env, policy, v['goal_range'], goal_center=v['goal_center'], horizon=v['horizon']) # downsampled_feasible_goals = feasible_goals[np.random.choice(feasible_goals.shape[0], v['add_on_policy']),:] all_goals.append(feasible_goals)
def run_task(v): random.seed(v['seed']) np.random.seed(v['seed']) sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res'] # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1] logger.log("Initializing report and plot_policy_reward...") log_dir = logger.get_snapshot_dir() # problem with logger module here!! report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3) report.add_header("{}".format(EXPERIMENT_TYPE)) report.add_text(format_dict(v)) tf_session = tf.Session() inner_env = normalize(AntMazeEnv(maze_id=v['maze_id'])) uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'], bounds=v['goal_range'], center=v['goal_center']) env = GoalExplorationEnv( env=inner_env, goal_generator=uniform_goal_generator, obs2goal_transform=lambda x: x[-3:-1], terminal_eps=v['terminal_eps'], distance_metric=v['distance_metric'], extend_dist_rew=v['extend_dist_rew'], only_feasible=v['only_feasible'], terminate_env=True, ) policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=(64, 64), # Fix the variance since different goals will require different variances, making this parameter hard to learn. learn_std=v['learn_std'], adaptive_std=v['adaptive_std'], std_hidden_sizes=(16, 16), # this is only used if adaptive_std is true! output_gain=v['output_gain'], init_std=v['policy_init_std'], ) baseline = LinearFeatureBaseline(env_spec=env.spec) # initialize all logging arrays on itr0 outer_iter = 0 logger.log('Generating the Initial Heatmap...') test_and_plot_policy(policy, env, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'], itr=outer_iter, report=report, limit=v['goal_range'], center=v['goal_center']) report.new_row() # GAN logger.log("Instantiating the GAN...") gan_configs = {key[4:]: value for key, value in v.items() if 'GAN_' in key} for key, value in gan_configs.items(): if value is tf.train.AdamOptimizer: gan_configs[key] = tf.train.AdamOptimizer(gan_configs[key + '_stepSize']) if value is tflearn.initializations.truncated_normal: gan_configs[key] = tflearn.initializations.truncated_normal( stddev=gan_configs[key + '_stddev']) gan = StateGAN( state_size=v['goal_size'], evaluater_size=v['num_labels'], state_range=v['goal_range'], state_center=v['goal_center'], state_noise_level=v['goal_noise_level'], generator_layers=v['gan_generator_layers'], discriminator_layers=v['gan_discriminator_layers'], noise_size=v['gan_noise_size'], tf_session=tf_session, configs=gan_configs, ) all_goals = StateCollection(distance_threshold=v['coll_eps']) for outer_iter in range(1, v['outer_iters']): logger.log("Outer itr # %i" % outer_iter) feasible_goals = generate_initial_goals(env, policy, v['goal_range'], goal_center=v['goal_center'], horizon=v['horizon']) labels = np.ones((feasible_goals.shape[0], 2)).astype(np.float32) # make them all good goals plot_labeled_states(feasible_goals, labels, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'], maze_id=v['maze_id'], summary_string_base='On-policy Goals:\n') if v['only_on_policy']: goals = feasible_goals[np.random.choice( feasible_goals.shape[0], v['num_new_goals'], replace=False), :] else: logger.log("Training the GAN") gan.pretrain(feasible_goals, v['gan_outer_iters']) # Sample GAN logger.log("Sampling goals from the GAN") raw_goals, _ = gan.sample_states_with_noise(v['num_new_goals']) if v['replay_buffer'] and outer_iter > 0 and all_goals.size > 0: old_goals = all_goals.sample(v['num_old_goals']) goals = np.vstack([raw_goals, old_goals]) else: goals = raw_goals with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True): logger.log("Updating the environment goal generator") env.update_goal_generator( UniformListStateGenerator( goals.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'], )) logger.log("Training the algorithm") algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=v['pg_batch_size'], max_path_length=v['horizon'], n_itr=v['inner_iters'], step_size=0.01, plot=False, ) algo.train() logger.log("Labeling the goals") labels = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], key='goal_reached') plot_labeled_states(goals, labels, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'], maze_id=v['maze_id']) logger.log('Generating the Heatmap...') test_and_plot_policy(policy, env, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'], itr=outer_iter, report=report, limit=v['goal_range'], center=v['goal_center']) logger.dump_tabular(with_prefix=False) report.new_row() # append new goals to list of all goals (replay buffer): Not the low reward ones!! filtered_raw_goals = [ goal for goal, label in zip(goals, labels) if label[0] == 1 ] all_goals.append(filtered_raw_goals) if v['add_on_policy']: logger.log("sampling on policy") feasible_goals = generate_initial_goals( env, policy, v['goal_range'], goal_center=v['goal_center'], horizon=v['horizon']) # downsampled_feasible_goals = feasible_goals[np.random.choice(feasible_goals.shape[0], v['add_on_policy']),:] all_goals.append(feasible_goals)