class Agent: def __init__(self, environment, x_dim, y_dim, state_dim, action_dim, observation_space_low, observation_space_high, action_space_low, action_space_high, unroll_steps, no_samples, discount_factor, random_matrices, biases, basis_dims, hidden_dim=32, learn_reward=0, use_mean_reward=0, update_hyperstate=1, policy_use_hyperstate=1, learn_diff=0): #assert environment in ['Pendulum-v0', 'MountainCarContinuous-v0'] assert x_dim == state_dim + action_dim assert len(action_space_low.shape) == 1 np.testing.assert_equal(-action_space_low, action_space_high) self.environment = environment self.x_dim = x_dim self.y_dim = y_dim self.state_dim = state_dim self.action_dim = action_dim self.observation_space_low = observation_space_low self.observation_space_high = observation_space_high self.action_space_low = action_space_low self.action_space_high = action_space_high self.unroll_steps = unroll_steps self.no_samples = no_samples self.discount_factor = discount_factor self.random_matrices = random_matrices self.biases = biases self.basis_dims = basis_dims self.hidden_dim = hidden_dim self.learn_reward = learn_reward self.use_mean_reward = use_mean_reward self.update_hyperstate = update_hyperstate self.policy_use_hyperstate = policy_use_hyperstate self.learn_diff = learn_diff if self.environment == 'Pendulum-v0' and self.learn_reward == 0: #self.reward_function = real_env_pendulum_reward() self.reward_function = ANN(self.state_dim + self.action_dim, 1) self.placeholders_reward = [ tf.placeholder(shape=v.shape, dtype=tf.float64) for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.reward_function.scope) ] self.assign_ops0 = [ v.assign(pl) for v, pl in zip( tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.reward_function.scope), self.placeholders_reward) ] elif self.environment == 'MountainCarContinuous-v0' and self.learn_reward == 0: self.reward_function = mountain_car_continuous_reward_function() #self.hyperstate_dim = sum([(basis_dim*(basis_dim+1))/2 + basis_dim for basis_dim in self.basis_dims]) self.hyperstate_dim = sum( [basis_dim * (basis_dim + 1) for basis_dim in self.basis_dims]) self.random_projection_matrix = np.random.normal( loc=0., scale=1. / np.sqrt(self.state_dim), size=[self.hyperstate_dim, self.state_dim]) input_dim = self.state_dim if self.policy_use_hyperstate == 1: input_dim *= 2 self.w1 = np.concatenate([ np.random.normal(size=[input_dim, self.hidden_dim]), np.random.uniform(-3e-3, 3e-3, size=[1, self.hidden_dim]) ], axis=0) self.w2 = np.concatenate([ np.random.normal(size=[self.hidden_dim, self.hidden_dim]), np.random.uniform(-3e-3, 3e-3, size=[1, self.hidden_dim]) ], axis=0) self.w3 = np.concatenate([ np.random.normal(size=[self.hidden_dim, self.action_dim]), np.random.uniform(-3e-3, 3e-3, size=[1, self.action_dim]) ], axis=0) self.thetas = self._pack([self.w1, self.w2, self.w3]) self.sizes = [[input_dim + 1, self.hidden_dim], [self.hidden_dim + 1, self.hidden_dim], [self.hidden_dim + 1, self.action_dim]] w1, w2, w3 = self._unpack(self.thetas, self.sizes) np.testing.assert_equal(w1, self.w1) np.testing.assert_equal(w2, self.w2) np.testing.assert_equal(w3, self.w3) def _pack(self, thetas): return np.concatenate([theta.flatten() for theta in thetas]) def _unpack(self, thetas, sizes): sidx = 0 weights = [] for size in sizes: i, j = size w = thetas[sidx:sidx + i * j].reshape([i, j]) sidx += i * j weights.append(w) return weights def _forward(self, thetas, X, hyperstate): #"Old" method of including hyperstate into policy network. ''' w0, w1, w2, w3 = self._unpack(thetas, self.sizes) XXtr, Xytr = hyperstate A = [xx + noise for xx, noise in zip(XXtr, self.noises)] wn = [solve(a, xy) for a, xy in zip(A, Xytr)] indices = [np.triu_indices(basis_dim, 1) for basis_dim in self.basis_dims] hyperstate = [] for i in range(len(X)): tmp0 = [] for j in range(len(A)): A[j][i][indices[j]] = np.nan tmp1 = A[j][i] tmp0.append(tmp1[~np.isnan(tmp1)]) tmp0.append(np.squeeze(wn[j][i])) tmp0 = np.concatenate(tmp0) hyperstate.append(tmp0) hyperstate = np.stack(hyperstate, axis=0) hyperstate = self._add_bias(hyperstate) hyperstate_embedding = np.tanh(np.matmul(hyperstate, w0)) ''' w1, w2, w3 = self._unpack(thetas, self.sizes) #Perform a simple random projection on the hyperstate. if self.policy_use_hyperstate == 1: hyperstate = np.concatenate([ np.concatenate([ np.reshape(XXtr, [len(XXtr), -1]), np.reshape(Xytr, [len(Xytr), -1]) ], axis=-1) for XXtr, Xytr in zip(*hyperstate) ], axis=-1) hyperstate = np.tanh(hyperstate / 50000.) hyperstate_embedding = np.matmul(hyperstate, self.random_projection_matrix) hyperstate_embedding = np.tanh(hyperstate_embedding) state_hyperstate = np.concatenate([X, hyperstate_embedding], axis=-1) policy_net_input = self._add_bias(state_hyperstate) else: policy_net_input = self._add_bias(X) h1 = np.tanh(np.matmul(policy_net_input, w1)) h1 = self._add_bias(h1) h2 = np.tanh(np.matmul(h1, w2)) h2 = self._add_bias(h2) out = np.tanh(np.matmul(h2, w3)) out = out * self.action_space_high #action bounds. return out def _add_bias(self, X): assert len(X.shape) == 2 return np.concatenate([X, np.ones([len(X), 1])], axis=-1) def _relu(self, X): return np.maximum(X, 0.) def _fit(self, cma_maxiter, X, XXtr, Xytr, hyperparameters, sess): warnings.filterwarnings( 'ignore', message= '.*scipy.linalg.solve\nIll-conditioned matrix detected. Result is not guaranteed to be accurate.\nReciprocal.*' ) assert len(XXtr) == self.state_dim + self.learn_reward assert len(Xytr) == self.state_dim + self.learn_reward assert len(hyperparameters) == self.state_dim + self.learn_reward if self.use_mean_reward == 1: print 'Warning: use_mean_reward is set to True but this flag is not used by this function.' X = np.copy(X) XXtr = [np.copy(ele) for ele in XXtr] Xytr = [np.copy(ele) for ele in Xytr] hyperparameters = [np.copy(ele) for ele in hyperparameters] X = np.expand_dims(X, axis=1) X = np.tile(X, [1, self.no_samples, 1]) X = np.reshape(X, [-1, self.state_dim]) Llowers = [ scipy.linalg.cholesky( (hp[-2] / hp[-1])**2 * np.eye(basis_dim) + XX, lower=True) for hp, basis_dim, XX in zip(hyperparameters, self.basis_dims, XXtr) ] Llowers = [ np.tile(ele[np.newaxis, ...], [len(X), 1, 1]) for ele in Llowers ] XXtr = [np.tile(ele[np.newaxis, ...], [len(X), 1, 1]) for ele in XXtr] Xytr = [np.tile(ele[np.newaxis, ...], [len(X), 1, 1]) for ele in Xytr] self.noises = [ (hp[2] / hp[3])**2 * np.eye(basis_dim) for hp, basis_dim in zip(hyperparameters, self.basis_dims) ] import cma options = {'maxiter': cma_maxiter, 'verb_disp': 1, 'verb_log': 0} print 'Before calling cma.fmin' res = cma.fmin(self._loss, self.thetas, 2., args=(np.copy(X), [np.copy(ele) for ele in Llowers ], [np.copy(ele) for ele in XXtr], [np.copy(ele) for ele in Xytr], None, [np.copy(ele) for ele in hyperparameters], sess), options=options) self.thetas = np.copy(res[0]) def _predict(self, Llower, Xytr, basis, noise_sd): ''' Llower = Llower[0] Xytr = Xytr[0] basis = np.squeeze(basis, axis=1) LinvXT = scipy.linalg.solve_triangular(Llower, basis.T, lower=True) pred_sigma = np.sum(np.square(LinvXT), axis=0)*noise_sd**2+noise_sd**2 pred_sigma = pred_sigma[..., np.newaxis] tmp0 = scipy.linalg.solve_triangular(Llower, basis.T, lower=True).T tmp1 = scipy.linalg.solve_triangular(Llower, Xytr, lower=True) pred_mu = np.matmul(tmp0, tmp1) return pred_mu, pred_sigma ''' #TODO:fix this. LinvXT = solve_triangular(Llower, np.transpose(basis, [0, 2, 1])) pred_sigma = np.sum(np.square(LinvXT), axis=1) * noise_sd**2 + noise_sd**2 tmp0 = np.transpose( solve_triangular(Llower, np.transpose(basis, [0, 2, 1])), [0, 2, 1]) tmp1 = solve_triangular(Llower, Xytr) pred_mu = np.matmul(tmp0, tmp1) pred_mu = np.squeeze(pred_mu, axis=-1) return pred_mu, pred_sigma def _loss(self, thetas, X, Llowers, XXtr, Xytr, A=[], hyperparameters=None, sess=None): rng_state = np.random.get_state() X = np.copy(X) Llowers = [np.copy(ele) for ele in Llowers] XXtr = [np.copy(ele) for ele in XXtr] Xytr = [np.copy(ele) for ele in Xytr] hyperparameters = [np.copy(ele) for ele in hyperparameters] try: np.random.seed(2) rewards = [] state = X for unroll_step in xrange(self.unroll_steps): action = self._forward(thetas, state, hyperstate=[Llowers, Xytr]) reward, basis_reward = self._reward(state, action, sess, Llowers[-1], Xytr[-1], hyperparameters[-1]) rewards.append((self.discount_factor**unroll_step) * reward) state_action = np.concatenate([state, action], axis=-1) means = [] covs = [] bases = [] for i in xrange(self.state_dim): length_scale, signal_sd, noise_sd, prior_sd = hyperparameters[ i] basis = _basis(state_action, self.random_matrices[i], self.biases[i], self.basis_dims[i], length_scale, signal_sd) basis = np.expand_dims(basis, axis=1) bases.append(basis) pred_mu, pred_sigma = self._predict( Llowers[i], Xytr[i], basis, noise_sd) means.append(pred_mu) covs.append(pred_sigma) means = np.concatenate(means, axis=-1) covs = np.concatenate(covs, axis=-1) bases.append(basis_reward) state_ = np.stack([ np.random.multivariate_normal(mean=mean, cov=np.diag(cov)) for mean, cov in zip(means, covs) ], axis=0) state = state + state_ if self.learn_diff else state_ if self.learn_diff == 0: state_ = np.clip(state_, self.observation_space_low, self.observation_space_high) state = np.clip(state, self.observation_space_low, self.observation_space_high) # #Removable # import copy # Llowers2 = copy.deepcopy(Llowers) # Xytr2 = copy.deepcopy(Xytr) # XXtr2 = copy.deepcopy(XXtr) # #Removable -END- if self.update_hyperstate == 1 or self.policy_use_hyperstate == 1: y = np.concatenate([state_, reward], axis=-1)[..., :self.state_dim + self.learn_reward] y = y[..., np.newaxis, np.newaxis] for i in xrange(self.state_dim + self.learn_reward): Llowers[i] = Llowers[i].transpose([0, 2, 1]) for i in xrange(self.state_dim + self.learn_reward): for j in xrange(len(Llowers[i])): cholupdate(Llowers[i][j], bases[i][j, 0].copy()) Xytr[i] += np.matmul(bases[i].transpose([0, 2, 1]), y[:, i, ...]) # #Removable # _, _, noise_sd, prior_sd = hyperparameters[i] # XXtr2[i], Xytr2[i], Llowers2[i] = self._update_hyperstate(XXtr2[i], XXtr2[i] + np.matmul(np.transpose(bases[i], [0, 2, 1]), bases[i]), Xytr2[i], Xytr2[i] + np.matmul(np.transpose(bases[i], [0, 2, 1]), y[:, i, ...]), Llowers2[i], (noise_sd/prior_sd)**2) # print i # print np.allclose(Llowers[i], Llowers2[i].transpose([0, 2, 1])) # print np.allclose(Xytr[i], Xytr2[i]) # #Removable -END- for i in xrange(self.state_dim + self.learn_reward): Llowers[i] = Llowers[i].transpose([0, 2, 1]) rewards = np.concatenate(rewards, axis=-1) rewards = np.sum(rewards, axis=-1) loss = -np.mean(rewards) np.random.set_state(rng_state) return loss except Exception as e: np.random.set_state(rng_state) print e, 'Returning 10e100' return 10e100 def _update_hyperstate(self, XXold, XXnew, Xyold, Xynew, Llowerold, var_ratio): var_diag = var_ratio * np.eye(XXnew.shape[-1]) XX = [] Xy = [] Llower = [] for i in range(len(XXnew)): try: tmp = scipy.linalg.cholesky(XXnew[i] + var_diag, lower=True) XX.append(XXnew[i].copy()) Xy.append(Xynew[i].copy()) Llower.append(tmp.copy()) except Exception as e: XX.append(XXold[i].copy()) Xy.append(Xyold[i].copy()) Llower.append(Llowerold[i].copy()) XX = np.stack(XX, axis=0) Xy = np.stack(Xy, axis=0) Llower = np.stack(Llower, axis=0) return XX, Xy, Llower def _reward(self, state, action, sess, Llower, Xy, hyperparameters): basis = None if self.environment == 'Pendulum-v0' and self.learn_reward == 0: reward = self.reward_function.build_np(sess, state, action) elif self.environment == 'MountainCarContinuous-v0' and self.learn_reward == 0: reward = self.reward_function.build_np(state, action) else: state_action = np.concatenate([state, action], axis=-1) length_scale, signal_sd, noise_sd, prior_sd = hyperparameters basis = _basis(state_action, self.random_matrices[-1], self.biases[-1], self.basis_dims[-1], length_scale, signal_sd) basis = np.expand_dims(basis, axis=1) pred_mu, pred_sigma = self._predict(Llower, Xy, basis, noise_sd) if self.use_mean_reward == 1: pred_sigma = np.zeros_like(pred_sigma) reward = np.stack([ np.random.normal(loc=loc, scale=scale) for loc, scale in zip(pred_mu, pred_sigma) ], axis=0) return reward, basis
class Agent: def __init__(self, environment, x_dim, y_dim, state_dim, action_dim, observation_space_low, observation_space_high, action_space_low, action_space_high, unroll_steps, no_samples, discount_factor, random_matrix_state, bias_state, basis_dim_state, random_matrix_reward, bias_reward, basis_dim_reward, hidden_dim=32, learn_reward=0, use_mean_reward=0, update_hyperstate=1, policy_use_hyperstate=1, learn_diff=0, dump_model=0): #assert environment in ['Pendulum-v0', 'MountainCarContinuous-v0'] assert x_dim == state_dim + action_dim assert len(action_space_low.shape) == 1 np.testing.assert_equal(-action_space_low, action_space_high) self.environment = environment self.x_dim = x_dim self.y_dim = y_dim self.state_dim = state_dim self.action_dim = action_dim self.observation_space_low = observation_space_low self.observation_space_high = observation_space_high self.action_space_low = action_space_low self.action_space_high = action_space_high self.unroll_steps = unroll_steps self.no_samples = no_samples self.discount_factor = discount_factor self.random_matrix_state = random_matrix_state self.bias_state = bias_state self.basis_dim_state = basis_dim_state self.random_matrix_reward = random_matrix_reward self.bias_reward = bias_reward self.basis_dim_reward = basis_dim_reward self.hidden_dim = hidden_dim self.learn_reward = learn_reward self.use_mean_reward = use_mean_reward self.update_hyperstate = update_hyperstate self.policy_use_hyperstate = policy_use_hyperstate self.learn_diff = learn_diff self.dump_model = dump_model self.uid = str(uuid.uuid4()) self.epoch = 0 if self.environment == 'Pendulum-v0' and self.learn_reward == 0: #self.reward_function = real_env_pendulum_reward() self.reward_function = ANN(self.state_dim + self.action_dim, 1) self.placeholders_reward = [ tf.placeholder(shape=v.shape, dtype=tf.float64) for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.reward_function.scope) ] self.assign_ops0 = [ v.assign(pl) for v, pl in zip( tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.reward_function.scope), self.placeholders_reward) ] elif self.environment == 'MountainCarContinuous-v0' and self.learn_reward == 0: self.reward_function = mountain_car_continuous_reward_function() self.hyperstate_dim = self.basis_dim_state * (self.basis_dim_state + self.state_dim) if self.learn_reward == 1: self.hyperstate_dim += self.basis_dim_reward * ( self.basis_dim_reward + 1) self.random_projection_matrix = np.random.normal( loc=0., scale=1. / np.sqrt(self.state_dim), size=[self.hyperstate_dim, self.state_dim]) input_dim = self.state_dim if self.policy_use_hyperstate == 1: input_dim *= 2 self.w1 = np.concatenate([ np.random.normal(size=[input_dim, self.hidden_dim]), np.random.uniform(-3e-3, 3e-3, size=[1, self.hidden_dim]) ], axis=0) self.w2 = np.concatenate([ np.random.normal(size=[self.hidden_dim, self.hidden_dim]), np.random.uniform(-3e-3, 3e-3, size=[1, self.hidden_dim]) ], axis=0) self.w3 = np.concatenate([ np.random.normal(size=[self.hidden_dim, self.action_dim]), np.random.uniform(-3e-3, 3e-3, size=[1, self.action_dim]) ], axis=0) self.thetas = self._pack([self.w1, self.w2, self.w3]) self.sizes = [[input_dim + 1, self.hidden_dim], [self.hidden_dim + 1, self.hidden_dim], [self.hidden_dim + 1, self.action_dim]] w1, w2, w3 = self._unpack(self.thetas, self.sizes) np.testing.assert_equal(w1, self.w1) np.testing.assert_equal(w2, self.w2) np.testing.assert_equal(w3, self.w3) def _pack(self, thetas): return np.concatenate([theta.flatten() for theta in thetas]) def _unpack(self, thetas, sizes): sidx = 0 weights = [] for size in sizes: i, j = size w = thetas[sidx:sidx + i * j].reshape([i, j]) sidx += i * j weights.append(w) return weights def _forward(self, thetas, X, hyperstate_params): w1, w2, w3 = self._unpack(thetas, self.sizes) #Perform a simple random projection on the hyperstate. if self.policy_use_hyperstate == 1: Llower_state, Xytr_state, Llower_reward, Xytr_reward = hyperstate_params hyperstate = np.concatenate([ Llower_state.reshape([len(Llower_state), -1]), Xytr_state.reshape([len(Xytr_state), -1]), Llower_reward.reshape([len(Llower_reward), -1]), Xytr_reward.reshape([len(Xytr_reward), -1]) ], axis=-1) hyperstate = np.tanh(hyperstate / 50000.) hyperstate_embedding = np.matmul(hyperstate, self.random_projection_matrix) hyperstate_embedding = np.tanh(hyperstate_embedding) state_hyperstate = np.concatenate([X, hyperstate_embedding], axis=-1) policy_net_input = self._add_bias(state_hyperstate) else: policy_net_input = self._add_bias(X) h1 = np.tanh(np.matmul(policy_net_input, w1)) h1 = self._add_bias(h1) h2 = np.tanh(np.matmul(h1, w2)) h2 = self._add_bias(h2) out = np.tanh(np.matmul(h2, w3)) out = out * self.action_space_high #action bounds. return out def _add_bias(self, X): assert len(X.shape) == 2 return np.concatenate([X, np.ones([len(X), 1])], axis=-1) def _relu(self, X): return np.maximum(X, 0.) def _fit(self, cma_maxiter, X, XXtr_state, Xytr_state, hyperparameters_state, XXtr_reward, Xytr_reward, hyperparameters_reward, sess): warnings.filterwarnings( 'ignore', message= '.*scipy.linalg.solve\nIll-conditioned matrix detected. Result is not guaranteed to be accurate.\nReciprocal.*' ) assert XXtr_state.shape == (self.basis_dim_state, self.basis_dim_state) assert Xytr_state.shape == (self.basis_dim_state, self.state_dim) assert XXtr_reward.shape == (self.basis_dim_reward, self.basis_dim_reward) assert Xytr_reward.shape == (self.basis_dim_reward, 1) assert hyperparameters_state.shape == hyperparameters_reward.shape if self.use_mean_reward == 1: print( 'Warning: use_mean_reward is set to True but this flag is not used by this function.' ) #Copy the arrays (just to be safe no overwriting occurs). X = X.copy() XXtr_state = XXtr_state.copy() Xytr_state = Xytr_state.copy() hyperparameters_state = hyperparameters_state.copy() XXtr_reward = XXtr_reward.copy() Xytr_reward = Xytr_reward.copy() hyperparameters_reward = hyperparameters_reward.copy() X = np.expand_dims(X, axis=1) X = np.tile(X, [1, self.no_samples, 1]) X = np.reshape(X, [-1, self.state_dim]) #State Llower_state = spla.cholesky( (hyperparameters_state[-2] / hyperparameters_state[-1])**2 * np.eye(self.basis_dim_state) + XXtr_state, lower=True) Llower_state = np.tile(Llower_state, [len(X), 1, 1]) XXtr_state = np.tile(XXtr_state, [len(X), 1, 1]) Xytr_state = np.tile(Xytr_state, [len(X), 1, 1]) #Reward if self.learn_reward: Llower_reward = spla.cholesky( (hyperparameters_reward[-2] / hyperparameters_reward[-1])**2 * np.eye(self.basis_dim_reward) + XXtr_reward, lower=True) Llower_reward = np.tile(Llower_reward, [len(X), 1, 1]) XXtr_reward = np.tile(XXtr_reward, [len(X), 1, 1]) Xytr_reward = np.tile(Xytr_reward, [len(X), 1, 1]) import cma options = {'maxiter': cma_maxiter, 'verb_disp': 1, 'verb_log': 0} print('Before calling cma.fmin') res = cma.fmin( self._loss, self.thetas, 2., args=(X.copy(), Llower_state.copy(), XXtr_state.copy(), Xytr_state.copy(), hyperparameters_state, Llower_reward.copy() if self.learn_reward else None, XXtr_reward.copy() if self.learn_reward else None, Xytr_reward.copy() if self.learn_reward else None, hyperparameters_reward if self.learn_reward else None, sess), options=options) self.thetas = np.copy(res[0]) if self.dump_model: print('Unique identifier:', self.uid) directory = './models/' if not os.path.exists(directory): os.makedirs(directory) with open( directory + self.uid + '_epoch:' + str(self.epoch) + '.p', 'wb') as fp: pickle.dump(self.thetas, fp) self.epoch += 1 def _predict(self, Llower, Xytr, basis, noise_sd): #TODO: fix this. LinvXT = solve_triangular(Llower, basis.transpose([0, 2, 1])) sigma = np.sum(np.square(LinvXT), axis=1) * noise_sd**2 + noise_sd**2 tmp0 = solve_triangular(Llower, basis.transpose([0, 2, 1])).transpose([0, 2, 1]) tmp1 = solve_triangular(Llower, Xytr) mu = np.matmul(tmp0, tmp1).squeeze(axis=1) return mu, sigma def _loss(self, thetas, X, Llower_state, XXtr_state, Xytr_state, hyperparameters_state, Llower_reward, XXtr_reward, Xytr_reward, hyperparameters_reward, sess=None): X = X.copy() Llower_state = Llower_state.copy() XXtr_state = XXtr_state.copy() Xytr_state = Xytr_state.copy() hyperparameters_state = hyperparameters_state.copy() if self.learn_reward: Llower_reward = Llower_reward.copy() XXtr_reward = XXtr_reward.copy() Xytr_reward = Xytr_reward.copy() hyperparameters_reward = hyperparameters_reward.copy() rng_state = np.random.get_state() #try: np.random.seed(2) rewards = [] state = X for unroll_step in xrange(self.unroll_steps): action = self._forward(thetas, state, hyperstate_params=[ Llower_state, Xytr_state, Llower_reward, Xytr_reward ]) state_action = np.concatenate([state, action], axis=-1) reward, basis_reward = self._reward(state, action, state_action, sess, Llower_reward, Xytr_reward, hyperparameters_reward) rewards.append((self.discount_factor**unroll_step) * reward) length_scale, signal_sd, noise_sd, prior_sd = hyperparameters_state basis_state = _basis(state_action, self.random_matrix_state, self.bias_state, self.basis_dim_state, length_scale, signal_sd) basis_state = basis_state[:, None, ...] mu, sigma = self._predict(Llower_state, Xytr_state, basis_state, noise_sd) state_ = mu + np.sqrt(sigma) * np.random.standard_normal( size=mu.shape) if self.learn_diff: state_tmp = state.copy() state = np.clip(state + state_, self.observation_space_low, self.observation_space_high) state_ = state - state_tmp else: state_ = np.clip(state_, self.observation_space_low, self.observation_space_high) state = state_.copy() if self.update_hyperstate == 1 or self.policy_use_hyperstate == 1: #Update state hyperstate Llower_state = Llower_state.transpose([0, 2, 1]) for i in range(len(Llower_state)): cholupdate(Llower_state[i], basis_state[i, 0].copy()) Llower_state = Llower_state.transpose([0, 2, 1]) Xytr_state += np.matmul(basis_state.transpose([0, 2, 1]), state_[..., None, :]) #Update reward hyperstate if self.learn_reward: Llower_reward = Llower_reward.transpose([0, 2, 1]) for i in range(len(Llower_reward)): cholupdate(Llower_reward[i], basis_reward[i, 0].copy()) Llower_reward = Llower_reward.transpose([0, 2, 1]) Xytr_reward += np.matmul(basis_reward.transpose([0, 2, 1]), reward[..., None, :]) rewards = np.concatenate(rewards, axis=-1) rewards = np.sum(rewards, axis=-1) loss = -np.mean(rewards) np.random.set_state(rng_state) return loss #except Exception as e: #np.random.set_state(rng_state) #print e, 'Returning 10e100' #return 10e100 def _reward(self, state, action, state_action, sess, Llower, Xy, hyperparameters): basis = None if self.environment == 'Pendulum-v0' and self.learn_reward == 0: reward = self.reward_function.build_np(sess, state, action) elif self.environment == 'MountainCarContinuous-v0' and self.learn_reward == 0: reward = self.reward_function.build_np(state, action) else: #state_action = np.concatenate([state, action], axis=-1) length_scale, signal_sd, noise_sd, prior_sd = hyperparameters basis = _basis(state_action, self.random_matrix_reward, self.bias_reward, self.basis_dim_reward, length_scale, signal_sd) basis = basis[:, None, ...] mu, sigma = self._predict(Llower, Xy, basis, noise_sd) if self.use_mean_reward == 1: sigma = np.zeros_like(sigma) reward = mu + np.sqrt(sigma) * np.random.standard_normal( size=mu.shape) return reward, basis