def get_pitch_yaw_roll(input_path, r=0.05): import os import numpy as np import cv2 from shutil import copyfile from pathlib import Path from utils import Path_utils from utils.DFLPNG import DFLPNG from utils.DFLJPG import DFLJPG from facelib import LandmarksProcessor from joblib import Subprocessor import multiprocessing from interact import interact as io from imagelib import estimate_sharpness io.log_info("Sorting by face yaw...") img_list = [] trash_img_list = [] for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"): filepath = Path(filepath) if filepath.suffix == '.png': dflimg = DFLPNG.load(str(filepath)) elif filepath.suffix == '.jpg': dflimg = DFLJPG.load(str(filepath)) else: dflimg = None if dflimg is None: io.log_err("%s is not a dfl image file" % (filepath.name)) trash_img_list.append([str(filepath)]) continue pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll( dflimg.get_landmarks()) img_list.append([str(filepath), pitch, yaw, roll]) img_list.sort(key=lambda item: item[1]) with open(os.path.join(input_path, "_pitch_yaw_roll.csv"), "w") as f: for i in img_list: f.write("%s,%f,%f,%f\n" % (os.path.basename(i[0]), i[1], i[2], i[3])) import cv width = 800 img = cv.cv_new((width, width)) xs = [i[1] for i in img_list] ys = [i[2] for i in img_list] cs = [(128, 128, 128)] * len(xs) rs = [int(r * width / 2)] * len(xs) cv.cv_scatter(img, xs, ys, [-1, 1], [-1, 1], cs, rs) cs = [(0xcc, 0x66, 0x33)] * len(xs) rs = [2] * len(xs) cv.cv_scatter(img, xs, ys, [-1, 1], [-1, 1], cs, rs) cv.cv_save(img, os.path.join(input_path, "_pitch_yaw_roll.bmp")) return img_list
def skip_by_pitch(src_path, dst_path): import os import shutil import cv size = 800 r = 20 src_img_list = get_pitch_yaw_roll(src_path) dst_img_list = get_pitch_yaw_roll(dst_path) trash_path = dst_path + "_trash" if not os.path.exists(trash_path): os.makedirs(trash_path) img = cv.cv_new((size + 1, size + 1)) trans: Callable[[Any], int] = lambda v: int((v + 1) * size / 2) count = 0 for [_, pitch, yaw, _] in src_img_list: x = trans(pitch) y = trans(yaw) cv.cv_point(img, (x, y), (128, 128, 128), r) # cv.cv_show(img) xys = [] for [path, pitch, yaw, _] in dst_img_list: x = trans(pitch) y = trans(yaw) c = img[y, x] c_ = img[-y, x] if sum(c) == 255 * 3 and sum(c_) == 255 * 3: xys.append((x, y, (0, 0, 0xff))) if not os.path.exists(path) or not os.path.exists(trash_path): continue count += 1 shutil.move(path, trash_path) else: xys.append((x, y, (0xcc, 0x66, 0x33))) for (x, y, color) in xys: cv.cv_point(img, (x, y), color, 2) # cv.cv_show(img) io.log_info("Out Of Pitch, %d / %d" % (count, len(dst_img_list))) save_path = os.path.join(dst_path, "_skip_by_pitch.bmp") cv.cv_save(img, save_path)
def select(exists_path, pool_path, div=200): # 先计算output_path的已有图像 import cv import dfl import random width = 800 trans = cv.trans_fn(-1, 1, 0, width) img = cv.cv_new((width, width)) for f in io.progress_bar_generator(os.listdir(exists_path), "Existing Imgs"): if f.endswith(".png") or f.endswith("jpg"): img_path = os.path.join(exists_path, f) dfl_img = dfl.dfl_load_img(img_path) pitch, yaw, _ = dfl.dfl_estimate_pitch_yaw_roll(dfl_img) pitch = trans(pitch) yaw = trans(yaw) cv.cv_circle(img, (pitch, yaw), (128, 128, 128), width / div, -1) time_str = get_time_str() import shutil pool_files = list(os.listdir(pool_path)) # random.shuffle(pool_files) count = 0 for f in io.progress_bar_generator(pool_files, os.path.basename(pool_path)): if f.endswith(".png") or f.endswith(".jpg"): img_path = os.path.join(pool_path, f) dfl_img = dfl.dfl_load_img(img_path) pitch, yaw, _ = dfl.dfl_estimate_pitch_yaw_roll(dfl_img) pitch = trans(pitch) yaw = trans(yaw) if sum(img[yaw][pitch]) == 255 * 3: dst = os.path.join(exists_path, "%s_%s" % (time_str, f)) shutil.copy(img_path, dst) count += 1 cv.cv_circle(img, (pitch, yaw), (0xcc, 0x66, 0x33), width / div, -1) cv.cv_save(img, os.path.join(exists_path, "_select.bmp")) io.log_info("Copy %d, Total %d" % (count, len(pool_files)))
def match_by_pitch(data_src_path, data_dst_path): r = 0.05 mn = 1 mx = 3 import cv import shutil # 准备各种路径 src_aligned_store = os.path.join(data_src_path, "aligned_store") if not os.path.exists(src_aligned_store): raise Exception("No Src Aligned Store") src_aligned = os.path.join(data_dst_path, "src") if os.path.exists(src_aligned): shutil.rmtree(src_aligned) os.mkdir(src_aligned) dst_aligned = os.path.join(data_dst_path, "aligned") dst_aligned_trash = os.path.join(data_dst_path, "aligned_trash") if not os.path.exists(dst_aligned_trash): os.mkdir(dst_aligned_trash) # 读取角度信息 src_img_list = get_pitch_yaw_roll(src_aligned_store) dst_img_list = get_pitch_yaw_roll(dst_aligned) src_pitch = list([i[1] for i in src_img_list]) src_yaw = list([i[2] for i in src_img_list]) dst_pitch = list([i[1] for i in dst_img_list]) dst_yaw = list([i[2] for i in dst_img_list]) src_ps = np.array(list(zip(src_pitch, src_yaw)), "float") dst_ps = np.array(list(zip(dst_pitch, dst_yaw)), "float") # 计算最近的n个点 src_match = set() dst_match = set() for p, i in io.progress_bar_generator(zip(dst_ps, range(len(dst_ps))), "Calculating"): ds = np.linalg.norm(src_ps - p, axis=1, keepdims=True) idxs = np.argsort(ds, axis=0) min_idx = idxs[mn - 1][0] # 极端情况所有距离都不满足半径范围 if ds[min_idx] > r: continue # 至少有一个满足半径条件了,dst_point可以留下 dst_match.add(i) # 所有满足条件的加入到src_match for idx in idxs[:mx]: idx = idx[0] if ds[idx] > r: break src_match.add(idx) io.log_info("%s, %s, %s, %s" % ("Src Match", len(src_match), "Src All", len(src_img_list))) io.log_info("%s, %s, %s, %s" % ("Dst Match", len(dst_match), "Dst All", len(dst_img_list))) # 画图 width = 800 xycr = [] for idx in range(len(src_img_list)): t = src_img_list[idx] if idx in src_match: xycr.append([t[1], t[2], (128, 128, 128), int(r * width / 2)]) # 蓝色,匹配到的 shutil.copy(t[0], src_aligned) else: xycr.append([t[1], t[2], (128, 128, 128), 2]) # 灰色,没匹配到 for idx in range(len(dst_img_list)): t = dst_img_list[idx] if idx in dst_match: xycr.append([t[1], t[2], (0, 255, 0), 2]) # 绿色,保留 else: xycr.append([t[1], t[2], (0, 0, 255), 2]) # 红色,删除 shutil.move(t[0], dst_aligned_trash) img = cv.cv_new((width, width)) xs = [i[0] for i in xycr] ys = [i[1] for i in xycr] cs = [i[2] for i in xycr] rs = [i[3] for i in xycr] cv.cv_scatter(img, xs, ys, [-1, 1], [-1, 1], cs, rs) cv.cv_save(img, os.path.join(dst_aligned, "_match_by_pitch.bmp")) # 加入base base_dir = os.path.join(data_src_path, "aligned_base") if os.path.exists(base_dir): for img in os.listdir(base_dir): if img.endswith(".jpg") or img.endswith(".png"): img_path = os.path.join(base_dir, img) shutil.copy(img_path, src_aligned)