Example #1
0
    def findEyes(self):
        """ Detects eyes in a photo and initializes relevant attributes

        Uses opencv libarary methods to detect a face and then detect the
        eyes in that face. If there are exactly two eye regions found it
        populates the region attributes. If not exactly two
        eye regions are found the method returns false.

        Args:
            None

        Return:
            bool - True if there were no issues. False for any error
        """
        
        #imcolor = cv.LoadImage(self.path)
        imcolor = self.facePhoto

        #Path setups
        cwd = os.path.dirname(os.path.abspath(sys.argv[0]))
        cwd += "/opencv/haarcascades/"
        frontalface = cwd + "haarcascade_frontalface_default.xml"
        eye = cwd + "haarcascade_eye.xml"

        faceCascade = cv.Load(frontalface)
        eyeCascade = cv.Load(eye)
        
        haarEyes = cv.Load(eye)
        storage = cv.CreateMemStorage()
        detectedEyes = cv.HaarDetectObjects(imcolor,haarEyes,storage)

        if DEBUG:
            print "detectedEyes = " + str(detectedEyes)

        if len(detectedEyes) == 2:
            if DEBUG:
                # Draw the rectangle 
                cv.Rectangle(imcolor,(detectedEyes[0][0][0], detectedEyes[0][0][1]), 
                    (detectedEyes[0][0][0] + detectedEyes[0][0][2], 
                    detectedEyes[0][0][1] + detectedEyes[0][0][3]),cv.RGB(155,155,200),2)
                cv.Rectangle(imcolor,(detectedEyes[1][0][0], detectedEyes[1][0][1]), 
                    (detectedEyes[1][0][0] + detectedEyes[1][0][2], 
                    detectedEyes[1][0][1] + detectedEyes[1][0][3]),cv.RGB(155,155,200),2)
                cv.ShowImage("Face with eyes",imcolor)
                cv.WaitKey(0)
                cv.DestroyWindow("Face with eyes")
            left = (detectedEyes[0][0][0], detectedEyes[0][0][1], 
                    detectedEyes[0][0][0] + detectedEyes[0][0][2], 
                    detectedEyes[0][0][1] + detectedEyes[0][0][3])
            right = (detectedEyes[1][0][0], detectedEyes[1][0][1], 
                    detectedEyes[1][0][0] + detectedEyes[1][0][2], 
                    detectedEyes[1][0][1] + detectedEyes[1][0][3])
            if DEBUG:
                print "left: " + str(left)
                print "right: " + str(right)
            self.setEyes(left, right)
            return True
        if DEBUG:
            print "Found more or less than 2 eyes, returning false"
        return False
Example #2
0
def draw_subdiv_facet(img, edge):

    t = edge
    count = 0

    # count number of edges in facet
    while count == 0 or t != edge:
        count += 1
        t = cv.Subdiv2DGetEdge(t, cv.CV_NEXT_AROUND_LEFT)

    buf = []

    # gather points
    t = edge
    for i in range(count):
        assert t > 4
        pt = cv.Subdiv2DEdgeOrg(t)
        if not pt:
            break
        buf.append((cv.Round(pt.pt[0]), cv.Round(pt.pt[1])))
        t = cv.Subdiv2DGetEdge(t, cv.CV_NEXT_AROUND_LEFT)

    if (len(buf) == count):
        pt = cv.Subdiv2DEdgeDst(cv.Subdiv2DRotateEdge(edge, 1))
        cv.FillConvexPoly(
            img, buf,
            cv.RGB(random.randrange(256), random.randrange(256),
                   random.randrange(256)), cv.CV_AA, 0)
        cv.PolyLine(img, [buf], 1, cv.RGB(0, 0, 0), 1, cv.CV_AA, 0)
        draw_subdiv_point(img, pt.pt, cv.RGB(0, 0, 0))
Example #3
0
    def detect_face(self, input_image):
        # Equalize the histogram to reduce lighting effects
        search_image = cv2.equalizeHist(input_image)
        
        # Begin the search using three different XML template
        # First check one of the frontal templates
        if self.cascade_2:
            faces = self.cascade_2.detectMultiScale(search_image, **self.haar_params)
                                         
        # If that fails, check the profile template
        if not len(faces):
            if self.cascade_3:
                faces = self.cascade_3.detectMultiScale(search_image,**self.haar_params)

        # If that fails, check a different frontal profile
        if not len(faces):
            if self.cascade_1:
                faces = self.cascade_1.detectMultiScale(search_image, **self.haar_params)
        
        # If we did not detect any faces in this frame, display the message
        # "LOST FACE" on the marker image (defined in ros2opencv2.py)
        if not len(faces):
            self.last_face_box = None
            if self.show_text:
                font_face = cv2.FONT_HERSHEY_SIMPLEX
                font_scale = 0.5
                cv2.putText(self.marker_image, "LOST FACE!", 
                            (20, int(self.frame_size[1] * 0.9)), 
                            font_face, font_scale, cv.RGB(255, 50, 50))
            return None
        
        # If the show_text is set, display the hit rate so far
        if self.show_text:
            font_face = cv2.FONT_HERSHEY_SIMPLEX
            font_scale = 0.5
            cv2.putText(self.marker_image, "Hit Rate: " + 
                        str(trunc(self.hit_rate, 2)), 
                        (20, int(self.frame_size[1] * 0.9)), 
                        font_face, font_scale, cv.RGB(255, 255, 0))
        
        # If we do have a face, rescale it and publish
        for (x, y, w, h) in faces:
            # Set the face box to be cvRect which is just a tuple in Python
            face_box = (x, y, w, h)
            
            # If we have a face, publish the bounding box as the ROI
            if face_box is not None:
                self.ROI = RegionOfInterest()
                self.ROI.x_offset = min(self.frame_size[0], max(0, x))
                self.ROI.y_offset = min(self.frame_size[1], max(0, y))
                self.ROI.width = min(self.frame_size[0], w)
                self.ROI.height = min(self.frame_size[1], h)
                
            self.pubROI.publish(self.ROI)

            # Break out of the loop after the first face 
            return face_box
def DetectRedEyes(image, faceCascade, eyeCascade):
	min_size = (20,20)
	image_scale = 2
	haar_scale = 1.2
	min_neighbors = 2
	haar_flags = 0

	# Allocate the temporary images
	gray = cv.CreateImage((image.width, image.height), 8, 1)
	smallImage = cv.CreateImage((cv.Round(image.width / image_scale),cv.Round (image.height / image_scale)), 8 ,1)

	# Convert color input image to grayscale
	cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

	# Scale input image for faster processing
	cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

	# Equalize the histogram
	cv.EqualizeHist(smallImage, smallImage)

	# Detect the faces
	faces = cv.HaarDetectObjects(smallImage, faceCascade, cv.CreateMemStorage(0),
	haar_scale, min_neighbors, haar_flags, min_size)

	# If faces are found
	if faces:
		for ((x, y, w, h), n) in faces:
		# the input to cv.HaarDetectObjects was resized, so scale the
		# bounding box of each face and convert it to two CvPoints
			pt1 = (int(x * image_scale), int(y * image_scale))
			pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
			cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
			face_region = cv.GetSubRect(image,(x,int(y + (h/4)),w,int(h/2)))

		cv.SetImageROI(image, (pt1[0],
			pt1[1],
			pt2[0] - pt1[0],
			int((pt2[1] - pt1[1]) * 0.7)))
		eyes = cv.HaarDetectObjects(image, eyeCascade,
		cv.CreateMemStorage(0),
		haar_scale, min_neighbors,
		haar_flags, (15,15))	

		if eyes:
			# For each eye found
			for eye in eyes:
				# Draw a rectangle around the eye
				cv.Rectangle(image,
				(eye[0][0],
				eye[0][1]),
				(eye[0][0] + eye[0][2],
				eye[0][1] + eye[0][3]),
				cv.RGB(255, 0, 0), 1, 8, 0)

	cv.ResetImageROI(image)
	return image
Example #5
0
def DetectRedEyes(image, faceCascade):
    min_size = (20, 20)
    image_scale = 2
    haar_scale = 1.1
    min_neighbors = 2
    haar_flags = 0

    # Allocate the temporary images
    gray = cv.CreateImage((image.width, image.height), 8, 1)
    smallImage = cv.CreateImage((cv.Round(
        image.width / image_scale), cv.Round(image.height / image_scale)), 8,
                                1)

    # Convert color input image to grayscale
    cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

    # Scale input image for faster processing
    cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

    # Equalize the histogram
    cv.EqualizeHist(smallImage, smallImage)

    # Detect the faces
    faces = cv.HaarDetectObjects(smallImage, faceCascade,
                                 cv.CreateMemStorage(0), haar_scale,
                                 min_neighbors, haar_flags, min_size)

    # If faces are found
    if faces:

        #print faces

        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            #print "face"
            global line2
            line2 = n
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            # print pt1
            # print pt2
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 1, 8, 0)
            cv.PutText(image, "face" + str(h), pt1, font, cv.RGB(255, 0, 0))
            cv.PutText(image, "Come close.", (0, 20), font, cv.RGB(255, 0, 0))
            cv.PutText(image, "Ensure your forehead is well lit.", (0, 40),
                       font, cv.RGB(255, 0, 0))
            cv.PutText(image, "Hit escape when done.", (0, 60), font,
                       cv.RGB(255, 0, 0))

    cv.ResetImageROI(image)
    return image
Example #6
0
def detect_and_draw(img, face_cascade):
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    image_scale = img.width / smallwidth

    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)
    # gray = cv.CreateImage((img.width,img.height), 8, 1)
    image_scale = img.width / smallwidth
    # small_img = cv.CreateImage((cv.Round(img.width / image_scale), cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    faces = cv.HaarDetectObjects(small_img, face_cascade,
                                 cv.CreateMemStorage(0), haar_scale,
                                 min_neighbors, haar_flags, min_size)

    if opencv_preview and faces:
        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
            if verbose:
                print "Face at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[
                    1]

    return True if faces else False
Example #7
0
def previewSideBySide(images):
    # scale the images down for display, and show them side by side
    # display a reticle over the images to help with convergence
    count = len(images)
    out = np.zeros((previewImageY, previewImageX*count, 3), dtype=np.uint8)
    i = 0
    for img in images:
        scaled = cv2.resize(img, (previewImageX, previewImageY))
        x = (previewImageX*i)
        out[0:previewImageY,x:x+previewImageX]=scaled
        cx = x + previewImageX/2
        cv2.line(out, (cx, 0), (cx, previewImageY), cv.RGB(200,200,200), 1)
        i+=1
    cv2.line(out, (0, previewImageY/2), (previewImageX*count, previewImageY/2),
             cv.RGB(200,200,200), 1)
    cv2.imshow('preview', out)
Example #8
0
def get_image(camera, filename=None):
    im = cv.QueryFrame(camera)

    # take greyscale and compute RMS value
    im2 = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_32F, 3)
    cv.Convert(im, im2)
    gray = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_32F, 1)
    cv.CvtColor(im2, gray, cv.CV_RGB2GRAY)
    gray_mat = cv.GetMat(gray)
    img = numpy.asarray(gray_mat)

    power = numpy.sqrt(numpy.mean(img**2))

    #save file
    if filename:
        font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.8, 0.8, 0, 2,
                           cv.CV_AA)
        cv.PutText(im, filename, (DATE_X, DATE_Y), font, cv.RGB(255, 255, 0))
        filename = os.path.join(DIR_PREFIX, filename + '.jpg')
        print filename
        cv.SaveImage(filename, im)
        del font
    else:
        filename = ''

    #del(camera)
    del im, im2, gray, img, gray_mat

    return (power, filename)
Example #9
0
    def depth_callback(self, data):
        # Convert the ROS image to OpenCV format using a cv_bridge helper function
        depth_image = self.convert_depth_image(data)

        # Process the depth image
        processed_depth_image = self.process_depth_image(depth_image)

        # Make global copies
        self.depth_image = depth_image.copy()
        self.processed_depth_image = processed_depth_image.copy()
        #self.publish_roi()

        font_face = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 0.5
        cv2.imshow("depth", self.processed_depth_image)
        if (self.cX > 0) and (self.cY > 0):
            dist = depth_image[self.cY][self.cX + 10]
            #            rospy.loginfo(str(dist))
            cv2.putText(
                self.frame, "Distance:" + str(dist) + "cX=" + str(self.cX) +
                "cY" + str(self.cY), (10, 25), font_face, font_scale,
                cv.RGB(255, 255, 0))

            self.dis_pub.publish(dist)
        self.keystroke = cv2.waitKey(5)
Example #10
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
                                cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
            haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the 
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    cv.ShowImage("result", img)
    def detect_and_draw(self, img, cascade, camera_position=0):
        min_size = (20, 20)
        image_scale = self.horizontalSlider_3.value()
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0
        # allocate temporary images
        gray = cv.CreateImage((img.width, img.height), 8, 1)
        small_img_height = cv.Round(img.height / image_scale)
        small_img = cv.CreateImage(
            (cv.Round(img.width / image_scale), small_img_height), 8, 1)
        # convert color input image to grayscale
        cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
        # scale input image for faster processing
        cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.EqualizeHist(small_img, small_img)

        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        if faces:
            for ((x, y, w, h), n) in faces:
                if self.face_cert < n:
                    x2, y2, w2, h2 = self.make_the_rectangle_bigger(
                        x, y, w, h, 1.22, small_img_height, image_scale)
                    self.create_person_and_add_to_room(img, (x2, y2, w2, h2),
                                                       camera_position)
                    if self.mark_detected_objects[camera_position]:
                        pt2 = (int(x2 + w2), int(y2 + h2))
                        cv.Rectangle(img, (x2, y2), pt2, cv.RGB(255, 0, 0), 3,
                                     8, 0)
        if self.show_main_view[camera_position]:
            cv.ShowImage("result" + str(camera_position), img)
Example #12
0
def hs_histogram(src):
    # Convert to HSV
    hsv = cv.CreateImage(cv.GetSize(src), 8, 3)
    cv.CvtColor(src, hsv, cv.CV_BGR2HSV)

    # Extract the H and S planes
    h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    cv.Split(hsv, h_plane, s_plane, None, None)
    planes = [h_plane, s_plane]

    h_bins = 30
    s_bins = 32
    hist_size = [h_bins, s_bins]
    # hue varies from 0 (~0 deg red) to 180 (~360 deg red again */
    h_ranges = [0, 180]
    # saturation varies from 0 (black-gray-white) to
    # 255 (pure spectrum color)
    s_ranges = [0, 255]
    ranges = [h_ranges, s_ranges]
    scale = 10
    hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
    cv.CalcHist([cv.GetImage(i) for i in planes], hist)
    (_, max_value, _, _) = cv.GetMinMaxHistValue(hist)

    hist_img = cv.CreateImage((h_bins * scale, s_bins * scale), 8, 3)

    for h in range(h_bins):
        for s in range(s_bins):
            bin_val = cv.QueryHistValue_2D(hist, h, s)
            intensity = cv.Round(bin_val * 255 / max_value)
            cv.Rectangle(hist_img, (h * scale, s * scale),
                         ((h + 1) * scale - 1, (s + 1) * scale - 1),
                         cv.RGB(intensity, intensity, intensity), cv.CV_FILLED)
    return hist_img
Example #13
0
def DetectFace(image, faceCascade, returnImage=False):
    # This function takes a grey scale cv image and finds
    # the patterns defined in the haarcascade function
    # modified from: http://www.lucaamore.com/?p=638

    #variables
    min_size = (30, 30)
    #image_scale = 2
    haar_scale = 1.1
    min_neighbors = 2
    haar_flags = 0

    # Equalize the histogram
    cv.EqualizeHist(image, image)

    # Detect the faces
    faces = cv.HaarDetectObjects(image, faceCascade, cv.CreateMemStorage(0),
                                 haar_scale, min_neighbors, haar_flags,
                                 min_size)

    # If faces are found
    if faces and returnImage:
        for ((x, y, w, h), n) in faces:
            # Convert bounding box to two CvPoints
            pt1 = (int(x), int(y))
            pt2 = (int(x + w), int(y + h))
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 5, 8, 0)

    if returnImage:
        return image
    else:
        return faces
Example #14
0
    def add_keypoints(self, roi, ignore_distance=False):
        # Begin with a mask of all black pixels
        mask = np.zeros_like(self.grey)

        # Get the coordinates and dimensions of the currently ROI
        try:
            ((x, y), (w, h), a) = roi
        except:
            try:
                x, y, w, h = roi
                a = 0
            except:
                rospy.loginfo("ROI has shrunk to zero...")
                return

        x = int(x)
        y = int(y)

        # Expand the ROI to look for new keypoints
        w_new = int(self.expand_roi * w)
        h_new = int(self.expand_roi * h)

        pt1 = (x - int(w_new / 2), y - int(h_new / 2))
        pt2 = (x + int(w_new / 2), y + int(h_new / 2))

        mask_box = ((x, y), (w_new, h_new), a)

        # Display the expanded ROI with a yellow rectangle
        if self.show_add_drop:
            cv2.rectangle(self.marker_image, pt1, pt2, cv.RGB(255, 255, 0))

        # Create a filled white ellipse within the mask box to define the ROI
        cv2.ellipse(mask, mask_box, cv.CV_RGB(255, 255, 255), cv.CV_FILLED)

        if self.keypoints is not None:
            # Mask the current keypoints
            for x, y in [np.int32(p) for p in self.keypoints]:
                cv2.circle(mask, (x, y), 5, 0, -1)

        new_keypoints = cv2.goodFeaturesToTrack(self.grey,
                                                mask=mask,
                                                **self.gf_params)

        # Append new keypoints to the current list if they are not
        # too far from the current cluster
        if new_keypoints is not None:
            for x, y in np.float32(new_keypoints).reshape(-1, 2):
                if ignore_distance:
                    self.keypoints.append((x, y))
                else:
                    distance = self.distance_to_cluster((x, y), self.keypoints)
                    if distance > self.add_keypoint_distance:
                        self.keypoints.append((x, y))
                        # Briefly display a blue disc where the new point is added
                        if self.show_add_drop:
                            cv2.circle(self.marker_image, (x, y), 3,
                                       (255, 255, 0, 0), cv.CV_FILLED, 2, 0)

            # Remove duplicate keypoints
            self.keypoints = list(set(self.keypoints))
Example #15
0
def detectFace(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage(
        (cv.Round(img.width / imageScale), cv.Round(img.height / imageScale)),
        8, 1)
    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
    cv.EqualizeHist(small_img, small_img)
    faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                 haarScale, minNeighbors, haarFlags, minSize)

    if faces:
        print "\tDetected ", len(faces), " object(s)"
        for ((x, y, w, h), n) in faces:
            #the input to cv.HaarDetectObjects was resized, scale the
            #bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * imageScale), int(y * imageScale))
            pt2 = (int((x + w) * imageScale), int((y + h) * imageScale))
            cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
        return img

    else:
        return False
Example #16
0
class Color:
    black = cv.RGB(0, 0, 0)
    white = cv.RGB(255, 255, 255)
    red = cv.RGB(255, 0, 0)
    green = cv.RGB(0, 255, 0)
    blue = cv.RGB(0, 0, 255)
    cyan = cv.RGB(0, 255, 255)
    magenta = cv.RGB(255, 0, 255)
    yellow = cv.RGB(255, 255, 0)
Example #17
0
def detect_and_draw(img, cascade, jpg_cnt):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 10000))
        if faces:
            for ((x, y, w, h), n) in faces:

                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))

                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

                if jpg_cnt % 50 == 1:
                    print('capture completed')
                    cv.SaveImage('test_' + str(jpg_cnt) + '.jpg', img)
                    print("aaa1")
                    url = 'http://210.94.185.52:8080/upload.php'
                    #files={ 'upfiles' : open('/home/lee/test_'+str(jpg_cnt)+'.jpg','rb')}
                    files = {
                        'upfiles':
                        open('/home/lee/test_' + str(jpg_cnt) + '.jpg', 'rb')
                    }
                    print("aaa2")
                    r = requests.post(url, files=files)
                    print("aaa3")
                    print(r.text)
                    for i in r.text.split():
                        try:
                            op = float(i)
                            break
                        except:
                            continue
                    print(op)
                    #LED
                    if op >= 0.9:
                        lock_on()
                    else:
                        print('no')

    cv.ShowImage("result", img)
Example #18
0
def draw_Lines(lines, img):
    for (rho, theta) in lines[:5]:
        a = cos(theta)
        b = sin(theta)
        x0 = a * rho
        y0 = b * rho
        pt1 = (cv.Round(x0 + 1000 * (-b)), cv.Round(y0 + 1000 * (a)))
        pt2 = (cv.Round(x0 - 1000 * (-b)), cv.Round(y0 - 1000 * (a)))
        cv.Line(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8)
Example #19
0
def detect_and_draw(img, cascade, detected):
    # allocate temporary images

    gray = cv.CreateImage((img.width, img.height), 8, 1)
    image_scale = img.width / smallwidth
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        # t = cv.GetTickCount() - t
        # print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        if faces:
            if detected == 0:
                # os.system('festival --tts hi &')
                detected = 1
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                print "Face at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[
                    1]
                # find amount needed to pan/tilt
                span = (pt1[0] + pt2[0]) / 2
                stlt = (pt1[1] + pt2[1]) / 2
                mid = smallwidth / 2
                if span < mid:
                    print "left", mid - span
                else:
                    print "right", span - mid

#os.system('echo "6="' + str(valTilt) + ' > /dev/pi-blaster')
#os.system('echo "7="' + str(valPan) + ' > /dev/pi-blaster')
        else:
            if detected == 1:
                #print "Last seen at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[1]
                #os.system('festival --tts bye &')
                status = "just disappeared"
            detected = 0

    cv.ShowImage("result", img)
    return detected
Example #20
0
def detect_and_draw(img, cascade, c):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    face_flag = False

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        if faces:
            face_flag = True
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))

                # ある程度顔が検出されたら
                if c > 4:
                    # 画像の保存
                    global counter
                    counter = -1
                    d = datetime.today()
                    datestr = d.strftime('%Y-%m-%d_%H-%M-%S')
                    outputname = '/home/pi/fd/fd_' + datestr + '.jpg'
                    cv.SaveImage(outputname, img)
                    print 'Face Detect'

                    # 読み込みと切り取り
                    fimg = cv.LoadImage(outputname)
                    fimg_trim = fimg[pt1[1]:pt2[1], pt1[0]:pt2[0]]
                    outputname2 = '/home/pi/fd/face_' + datestr + '.jpg'
                    cv.SaveImage(outputname2, fimg_trim)
                    print 'Face Image Save'

                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    cv.ShowImage("result", img)

    return face_flag
Example #21
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
			       cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        #print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        if faces:
            count = 0
            stop = 1
            name = 1
            no = 1
            dict = {}
            for num in range(14):
                dict[name] = no
                name += 1
            print dict
            f = open('no.json','w')
            json.dump(dict,f)
            #for count in range(14):
            #time.sleep(stop)
                #count += 1
                #print(count)
            #time.sleep(stop)
            #cv.PutText(img, "SAMPLE_TEXT", (0, 50), cv.CV_FONT_HERSHEY_PLAIN, cv.RGB(255, 255, 255))
            #cv.PutText(img, "SAMPLE_TEXT", (0, 50), cv.CV_FONT_HERSHEY_PLAIN, 4, (255, 255, 255), 2, cv.CV_AA )
            for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the 
            # bounding box of each face and convert it to two CvPoints
                #for count in range(14):
                count += 1
                print(count)
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                #count = count + 1
                #print(count)
                # cv.putText(img, "SAMPLE_TEXT", (0, 50), FONT_HERSHEY_PLAIN, 4, (255, 255, 255), 2, cv.CV_AA)


    cv.ShowImage("result", img)
    def detect_face(self, input_image):
        # First check one of the frontal templates
        if self.cascade_1:
            faces = self.cascade_1.detectMultiScale(input_image,
                                                    **self.haar_params)

        # If that fails, check the profile template
        if len(faces) == 0 and self.cascade_3:
            faces = self.cascade_3.detectMultiScale(input_image,
                                                    **self.haar_params)

        # If that also fails, check a the other frontal template
        if len(faces) == 0 and self.cascade_2:
            faces = self.cascade_2.detectMultiScale(input_image,
                                                    **self.haar_params)

        # The faces variable holds a list of face boxes.
        # If one or more faces are detected, return the first one.
        if len(faces) > 0:
            face_box = faces[0]
        else:
            # If no faces were detected, print the "LOST FACE" message on the screen
            if self.show_text:
                font_face = cv2.FONT_HERSHEY_SIMPLEX
                font_scale = 0.5
                cv2.putText(self.marker_image, "LOST FACE!", (int(
                    self.frame_size[0] * 0.65), int(self.frame_size[1] * 0.9)),
                            font_face, font_scale, cv.RGB(255, 50, 50))
            face_box = None

        # Display the hit rate so far
        if self.show_text:
            font_face = cv2.FONT_HERSHEY_SIMPLEX
            font_scale = 0.5
            cv2.putText(self.marker_image,
                        "Hit Rate: " + str(trunc(self.hit_rate, 2)),
                        (20, int(self.frame_size[1] * 0.9)), font_face,
                        font_scale, cv.RGB(255, 255, 0))

        return face_box
Example #23
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CloneMat(img)# cv.CreateImage((img.width,img.height)) # (cv.Round(img.width / image_scale),cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()
        #Scan image and get an array of faces
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        #print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the 
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                print "X " , x 
                if int(x * image_scale) > (img.width * 0.45):
                    #print "X " , x
                    #print steppera.IsTurning()
                    if (steppera.IsTurning() == False):
                        if (stepperInUse[STEPPERA] == True):
                            sensor_value = "-4"
                            if isNumeric(sensor_value):
                                print "Moving to" , sensor_value
                                steppera.changeSpeed(int(100 * sign(int(float(sensor_value)) - 0)),abs(int(float(sensor_value)) - 0))
                                while (steppera.IsTurning() == True):
                                    cv.WaitKey(100)
                if int((x + w) * image_scale) < (img.width * 0.55):
                    #print "X " , x
                    #print steppera.IsTurning()
                    if (steppera.IsTurning() == False):
                        if (stepperInUse[STEPPERA] == True):
                            sensor_value = "4"
                            if isNumeric(sensor_value):
                                print "Moving to" , sensor_value
                                steppera.changeSpeed(int(100 * sign(int(float(sensor_value)) - 0)),abs(int(float(sensor_value)) - 0))
                                while (steppera.IsTurning() == True):
                                    cv.WaitKey(100)

    cv.ShowImage("result", img)
Example #24
0
def drawPlayer(x, y, hm, img, r, g, b):
    tz = hm[2, 0] * x + hm[2, 1] * y + hm[2, 2]
    tx = hm[0, 0] * x + hm[0, 1] * y + hm[0, 2]
    ty = hm[1, 0] * x + hm[1, 1] * y + hm[1, 2]
    tx = int(tx / tz)
    ty = int(ty / tz)
    cv2.circle(img, (tx - 2503, ty),
               20,
               cv.RGB(r, g, b),
               thickness=cv.CV_FILLED,
               lineType=8,
               shift=0)
    return img, tx - 2503, ty
Example #25
0
def previewAlternate(images):
    # alternate left and right photos
    global pframe
    count = len(images)
    out = np.zeros((previewImageY, previewImageX, 3), dtype=np.uint8)
    i = 0

    if stereo:
        img = images[pframe&1]
        pframe+=1
    else:
        img = images[0]

    scaled = cv2.resize(img, (previewImageX, previewImageY))
    x = (previewImageX*i)
    out[0:previewImageY,x:x+previewImageX]=scaled
    cx = x + previewImageX/2
    cv2.line(out, (cx, 0), (cx, previewImageY), cv.RGB(200,200,200), 1)

    cv2.line(out, (0, previewImageY/2), (previewImageX*count, previewImageY/2),
             cv.RGB(200,200,200), 1)
    cv2.imshow('preview', out)
Example #26
0
def detect_and_draw(img, cascade):
# Acondicionamiento de la imagen, imagenes temporales
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
			    cv.Round (img.height / image_scale)), 8, 1)
# Crea la mascara
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
#Escala la imagen para procesarla homogeneamente
#Aplicacion de la Imagen Integral
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
    cv.EqualizeHist(small_img, small_img)
# PROcesamiento de la Imagen
    if(cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "Tiempo de la deteccion = %gms" % (t/(cv.GetTickFrequency()*1000.))
	if faces:
            for ((x, y, w, h), n) in faces:
#calcula los puntos de deteccion
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
		posx = int(((x+(x+w))/2)* image_scale)
 		posy = int(((y+(y+h))/2)* image_scale)
#dibuja un circulo en el centro de la imagen y otro en el centro del rostro
		cv.Circle(img, (80,60), 5, cv.RGB(0,0,255), 1, 8, 0)
		cv.Circle(img, (posx, posy), 5, cv.RGB(0,255,0), 1, 8, 0)
#si el estado esta libre enviamos datos de posicion por i2c
		state = readData()
		time.sleep(0.005)
		if state == 1:
			sendData(posx)
            		sendData(posy)
		print 'posx: ' + str(posx) + ' posy: ' + str(posy)

	cv.ShowImage("video", img)
Example #27
0
def getMouth2(imcolor,detectedFace,storage=None,DEBUG=None):
    if not storage:
        storage = cv.CreateMemStorage()
    # loading the classifiers
    haarMouth = cv.Load(defaults.haar_mouth)    
    # running the classifiers
    detectedMouth = cv.HaarDetectObjects(imcolor, haarMouth, storage)
    
    # draw a green rectangle where the face is detected
    if DEBUG and detectedMouth:
        for mouth in detectedMouth:
            showRectangle(imcolor,eye,cv.RGB(155, 10, 110))

    return detectedMouth
Example #28
0
    def veido_atpazinimas(self, frame):
        """Veido atpazinimo metodas"""
        frame = cv.fromarray(frame)
        # running the classifiers        
        detectedFace = cv.HaarDetectObjects(frame, haarFace, storage)

        if detectedFace:            
            for face in detectedFace:
                cv.Rectangle(frame,(face[0][0],face[0][1]),
                            (face[0][0]+face[0][2],face[0][1]+face[0][3]),
                            cv.RGB(155, 255, 25),2)

        frame = numpy.asarray(frame)
        return frame
Example #29
0
    def test_2542670(self):
        xys = [(94, 121), (94, 122), (93, 123), (92, 123), (91, 124), (91, 125), (91, 126), (92, 127), (92, 128), (92, 129), (92, 130), (92, 131), (91, 132), (90, 131), (90, 130), (90, 131), (91, 132), (92, 133), (92, 134), (93, 135), (94, 136), (94, 137), (94, 138), (95, 139), (96, 140), (96, 141), (96, 142), (96, 143), (97, 144), (97, 145), (98, 146), (99, 146), (100, 146), (101, 146), (102, 146), (103, 146), (104, 146), (105, 146), (106, 146), (107, 146), (108, 146), (109, 146), (110, 146), (111, 146), (112, 146), (113, 146), (114, 146), (115, 146), (116, 146), (117, 146), (118, 146), (119, 146), (120, 146), (121, 146), (122, 146), (123, 146), (124, 146), (125, 146), (126, 146), (126, 145), (126, 144), (126, 143), (126, 142), (126, 141), (126, 140), (127, 139), (127, 138), (127, 137), (127, 136), (127, 135), (127, 134), (127, 133), (128, 132), (129, 132), (130, 131), (131, 130), (131, 129), (131, 128), (132, 127), (133, 126), (134, 125), (134, 124), (135, 123), (136, 122), (136, 121), (135, 121), (134, 121), (133, 121), (132, 121), (131, 121), (130, 121), (129, 121), (128, 121), (127, 121), (126, 121), (125, 121), (124, 121), (123, 121), (122, 121), (121, 121), (120, 121), (119, 121), (118, 121), (117, 121), (116, 121), (115, 121), (114, 121), (113, 121), (112, 121), (111, 121), (110, 121), (109, 121), (108, 121), (107, 121), (106, 121), (105, 121), (104, 121), (103, 121), (102, 121), (101, 121), (100, 121), (99, 121), (98, 121), (97, 121), (96, 121), (95, 121)]

        #xys = xys[:12] + xys[16:]
        pts = cv.CreateMat(len(xys), 1, cv.CV_32SC2)
        for i,(x,y) in enumerate(xys):
            pts[i,0] = (x, y)
        storage = cv.CreateMemStorage()
        hull = cv.ConvexHull2(pts, storage)
        hullp = cv.ConvexHull2(pts, storage, return_points = 1)
        defects = cv.ConvexityDefects(pts, hull, storage)

        vis = cv.CreateImage((1000,1000), 8, 3)
        x0 = min([x for (x,y) in xys]) - 10
        x1 = max([x for (x,y) in xys]) + 10
        y0 = min([y for (y,y) in xys]) - 10
        y1 = max([y for (y,y) in xys]) + 10
        def xform(pt):
            x,y = pt
            return (1000 * (x - x0) / (x1 - x0),
                    1000 * (y - y0) / (y1 - y0))

        for d in defects[:2]:
            cv.Zero(vis)

            # First draw the defect as a red triangle
            cv.FillConvexPoly(vis, [xform(p) for p in d[:3]], cv.RGB(255,0,0))

            # Draw the convex hull as a thick green line
            for a,b in zip(hullp, hullp[1:]):
                cv.Line(vis, xform(a), xform(b), cv.RGB(0,128,0), 3)

            # Draw the original contour as a white line
            for a,b in zip(xys, xys[1:]):
                cv.Line(vis, xform(a), xform(b), (255,255,255))

            self.snap(vis)
Example #30
0
def getFaces(imcolor,storage=None,DEBUG=None):
    if not storage:
        storage = cv.CreateMemStorage()
    # loading the classifiers
    haarFace = cv.Load(defaults.haar_face)
    
    # running the classifiers
    detectedFace = cv.HaarDetectObjects(imcolor, haarFace, storage)
    
    # draw a green rectangle where the face is detected
    if DEBUG and detectedFace:
        for face in detectedFace:
            showRectangle(imcolor,face,cv.RGB(155, 55, 200))

    return detectedFace