Example #1
0
def process(img_name):
    """ 处理一张图片 """

    bak_path = os.path.join(bak_dir, img_name)
    img_path = os.path.join(img_dir, img_name)
    # 备份
    with open(img_path, 'rb') as fr, open(bak_path, 'wb') as fw:
        fw.write(fr.read())
    # 读取
    img = cv2.imread(img_path)
    # 缩小
    h, w = img.shape[: 2]
    if w > W:
        h = h * W // w
        w = W
        img = cv2.resize(img, (w, h),interpolation=cv2.INTER_CUBIC)
    # 滤波
    img = cv2.bilateralFilter(img, 40, 30, 75)
    # 转为灰度
    img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    # 过滤背景
    img[img > 200] = 255
    # 文字增强
    img[img < 30] = 0
    # 展示
    cv2.imshow('im', img)
    cv2.waitKey(0)
    # 写入
    cv2.imwrite(img_path, img)
Example #2
0
    def cartoon(self, image):
        '''
        Cartoonise Image!

        Datatypes: image:nparray format BGR
        
        '''
        numdown, numbilateral = 2, 7
        color = image
        for _ in range(numdown):
            color = cv2.pyrDown(color)
        for _ in range(numbilateral):
            color = cv2.bilateralFilter(color, d=9, sigmaColor=9, sigmaSpace=7)
        for _ in range(numdown):
            color = cv2.pyrUp(color)
        cartoon = cv2.bitwise_and(
            color,
            cv2.cvtColor(
                cv2.adaptiveThreshold(cv2.medianBlur(
                    cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), 7),
                                      255,
                                      cv2.ADAPTIVE_THRESH_MEAN_C,
                                      cv2.THRESH_BINARY,
                                      blockSize=9,
                                      C=2), cv2.COLOR_GRAY2RGB))
        cartoon = cv2.cvtColor(cartoon, cv2.COLOR_BGR2RGB)
        return cartoon
Example #3
0
    def __findNumberPlate__(self, image):
        ''' Handles all the pre-processing of image before passing it to Tesseract OCR '''
        resizedImage = imutils.resize(image, width=1000)
        grayImage = cv2.cvtColor(resizedImage, cv2.COLOR_BGR2GRAY)
        filteredImage = cv2.bilateralFilter(grayImage, 11, 17, 17)

        cannyEdges = cv2.Canny(filteredImage, 170, 200)
        contours, _ = cv2.findContours(cannyEdges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

        sortedContours = sorted(contours, key=cv2.contourArea, reverse=True)[:30]
        #cv2.drawContours(cannyEdges, sortedContours, 0, 255, -1)
        #cv2.imshow("Top 30 Contours", cannyEdges)          #Show the top 30 contours.
        #cv2.waitKey(0)

        NumberPlateCount = 0
        for contour in sortedContours:
            perimeter = cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, 0.02*perimeter, True)
            if len(approx) == 4:
                NumberPlateCount = approx
                break

        imageMask = np.zeros(grayImage.shape, np.uint8)
        x = cv2.drawContours(imageMask, [NumberPlateCount], 0, 255, -1)
        finalImage = cv2.bitwise_and(resizedImage, resizedImage, mask=imageMask)
        cv2.imwrite('numberPlateImage.jpg', finalImage)
        #finalGrayImage = cv2.cvtColor(finalImage, cv2.COLOR_BGR2GRAY)
        _, thresh2 = cv2.threshold(finalImage, 127, 255, cv2.THRESH_BINARY)
        cv2.imshow("Detected Number Plate", imutils.resize(finalImage, width=200))
        cv2.waitKey(0)
        return thresh2
def data_augment(xb, yb):
    if np.random.random() < 0.25:
        xb, yb = rotate(xb, yb, 90)

    if np.random.random() < 0.25:
        xb, yb = rotate(xb, yb, 180)

    if np.random.random() < 0.25:
        xb, yb = rotate(xb, yb, 270)

    if np.random.random() < 0.25:
        xb = cv2.flip(xb, 1)  # flipcode > 0:沿y轴翻转

        yb = cv2.flip(yb, 1)

    if np.random.random() < 0.25:
        xb = random_gamma_transform(xb, 1.0)

    if np.random.random() < 0.25:
        xb = blur(xb)

    # 双边过滤
    if np.random.random() < 0.25:
        xb = cv2.bilateralFilter(xb, 9, 75, 75)

    #  高斯滤波
    if np.random.random() < 0.25:
        xb = cv2.GaussianBlur(xb, (5, 5), 1.5)

    if np.random.random() < 0.2:
        xb = add_noise(xb)

    return xb, yb
Example #5
0
    def process_frame(self, frame):

        # Normalizing our image
        frame = frame / 255
        frame[frame > 255] = 255

        # Convert to a type we can threshold with
        frame = frame.astype(np.uint8)

        frame = cv2.bilateralFilter(frame, 9, 70, 70)

        # Convert to image
        converted_frame_img = Image.fromarray(np.uint8(frame))
        frame_enhanced = ImageEnhance.Contrast(converted_frame_img)

        # Enhance contrast
        contrast = 3
        frame = frame_enhanced.enhance(contrast)

        sharpness = 3
        frame = ImageEnhance.Sharpness(frame)

        frame = frame.enhance(sharpness)

        frame = Image.fromarray(np.uint8(frame))

        return frame
Example #6
0
def cartonize_image(our_image):
    new_img = np.array(our_image.convert('RGB'))
    img = cv2.cvtColor(new_img, 1)
    gray = cv2.cvtColor(new_img, cv2.COLOR_BGR2GRAY)
    gray = cv2.medianBlur(gray, 5)
    edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
                                  cv2.THRESH_BINARY, 9, 9)
    color = cv2.bilateralFilter(img, 9, 300, 300)
    cartoon = cv2.bitwise_and(color, color, mask=edges)
    return cartoon
Example #7
0
    def Bilateral_filter(self):
        img = cv.imread('Cat.png')
        blur = cv.bilateralFilter(img,9,90,90)

        plt_img = img [:,:,::-1]
        plt.figure('origin')
        plt.imshow(plt_img)
        plt_blur = blur[:,:,::-1]
        plt.figure('Bilateral')
        plt.imshow(plt_blur)
        plt.show()
def get_corners(painting_roi, draw=False):
    gray = cv2.cvtColor(painting_roi, cv2.COLOR_BGR2GRAY)
    blur = cv2.bilateralFilter(gray, 9, 75, 75)
    erosion = cv2.erode(blur, np.ones((9, 9), np.uint8), iterations=2)
    dilation = cv2.dilate(erosion, np.ones((9, 9), np.uint8), iterations=2)
    _, thresh = cv2.threshold(blur, 0, 255,
                              cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    # edges = auto_canny(thresh)

    h, w = thresh.shape[:2]
    mask = np.zeros((h + 2, w + 2), np.uint8)
    flood = thresh.copy()
    cv2.floodFill(flood, mask, (0, 0), 255)
    im_floodfill_inv = cv2.bitwise_not(flood)
    im_out = thresh | im_floodfill_inv

    contours, _ = cv2.findContours(im_out, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)

    # find the biggest countour (c) by the area
    c = max(contours, key=cv2.contourArea)

    x, y, w, h = cv2.boundingRect(c)
    bbox = x, y, w, h

    corners = cv2.goodFeaturesToTrack(im_out[y - 10:y + h + 10, x:x + w + 10],
                                      4,
                                      0.01,
                                      painting_roi.shape[0] / 3,
                                      useHarrisDetector=True)
    corners = np.int0(corners)
    corners = np.squeeze(corners)
    corners_img = painting_roi.copy()

    # draw the biggest contour (c) in green
    cv2.rectangle(corners_img, (x, y), (x + w + 10, y + h + 10), (0, 255, 0),
                  2)

    if draw:
        for i, corner in enumerate(corners):
            x_corner, y_corner = corner.ravel()
            cv2.circle(corners_img, (x_corner, y_corner), 3, 255, -1)
            cv2.putText(corners_img,
                        f'{i}', (x_corner + 3, y_corner + 3),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        0.75,
                        color=(255, 0, 0))
        cv2.imshow("corners", corners_img)

    # for corner in corners:
    #     corner[0] += x
    #     corner[1] += y

    return corners, bbox
Example #9
0
def toCarttonStyle(picturePath):
 # 设置输入输出路径和文件名称
    imgInput_FileName = picturePath
    imgOutput_FileName = 'res.jpg'
 
 # 属性设置
    num_down = 2 # 缩减像素采样的数目
    num_bilateral = 7 # 定义双边滤波的数目
 
 # 读取图片
    img_rgb = cv2.imread(imgInput_FileName)
 
 # 用高斯金字塔降低取样
    img_color = img_rgb
    for _ in range(num_down):
        img_color = cv2.pyrDown(img_color)
 
 # 重复使用小的双边滤波代替一个大的滤波
    for _ in range(num_bilateral):
        img_color = cv2.bilateralFilter(img_color, d=9, sigmaColor=9, sigmaSpace=7)
 
 # 升采样图片到原始大小
    for _ in range(num_down):
        img_color = cv2.pyrUp(img_color)
 
 # 转换为灰度并且使其产生中等的模糊
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
    img_blur = cv2.medianBlur(img_gray, 7)
 
 # 检测到边缘并且增强其效果
    img_edge = cv2.adaptiveThreshold(img_blur, 255,
        cv2.ADAPTIVE_THRESH_MEAN_C,
        cv2.THRESH_BINARY,
        blockSize=9,
        C=2)
 
 # 算法处理后,照片的尺寸可能会不统一
 # 把照片的尺寸统一化
    height=img_rgb.shape[0]
    width = img_rgb.shape[1]
    img_color=cv2.resize(img_color,(width,height))
 
 # 转换回彩色图像
    img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
    img_cartoon = cv2.bitwise_and(img_color, img_edge)
 
 # 保存转换后的图片
    cv2.imwrite(imgOutput_FileName, img_cartoon)
    print('文件转换成漫画成功,保存在' + imgOutput_FileName)
def cartoonize(image):
    """
    convert image into cartoon-like image
    image: input PIL image
    """

    output = np.array(image)
    x, y, c = output.shape
    # hists = []
    for i in range(c):
        output[:, :, i] = cv2.bilateralFilter(output[:, :, i], 5, 50, 50)
        # hist, _ = np.histogram(output[:, :, i], bins=np.arange(256+1))
        # hists.append(hist)
    edge = cv2.Canny(output, 100, 200)

    output = cv2.cvtColor(output, cv2.COLOR_RGB2HSV)

    hists = []
    # H
    hist, _ = np.histogram(output[:, :, 0], bins=np.arange(180 + 1))
    hists.append(hist)
    # S
    hist, _ = np.histogram(output[:, :, 1], bins=np.arange(256 + 1))
    hists.append(hist)
    # V
    hist, _ = np.histogram(output[:, :, 2], bins=np.arange(256 + 1))
    hists.append(hist)

    C = []
    for h in hists:
        C.append(k_histogram(h))
    print("centroids: {0}".format(C))

    output = output.reshape((-1, c))
    for i in range(c):
        channel = output[:, i]
        index = np.argmin(np.abs(channel[:, np.newaxis] - C[i]), axis=1)
        output[:, i] = C[i][index]
    output = output.reshape((x, y, c))
    output = cv2.cvtColor(output, cv2.COLOR_HSV2RGB)

    contours, _ = cv2.findContours(edge, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_NONE)
    # for i in range(len(contours)):
    #     tmp = contours[i]
    #     contours[i] = cv2.approxPolyDP(tmp, 2, False)
    cv2.drawContours(output, contours, -1, 0, thickness=1)
    return output
Example #11
0
def get_image_contours(image):
    """ Extracts contours from the image.

    Image is converted to a grayscale and a bilateral filter is applied to reduce noise
    and preserve edges. Then a canny filter is used to catch strong edges, contours are
    grabbed and the ten largest contours are retrieved based on area.
    """
    image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    image_filtered = cv.bilateralFilter(image_gray, 15, 75, 75)
    image_edges = cv.Canny(image_filtered, 30, 200)

    contours = cv.findContours(image_edges.copy(), cv.RETR_TREE,
                               cv.CHAIN_APPROX_SIMPLE)
    contours = imutils.grab_contours(contours)
    contours = sorted(contours, key=cv.contourArea, reverse=True)[:10]
    return contours
Example #12
0
def detectCircles(img,
                  param1=200,
                  param2=90,
                  minRadius=10,
                  maxRadius=130,
                  bias=15):
    roi = img.copy()
    img = cv.bilateralFilter(img, 9, 75, 75)  # Smoothing
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    # gray = cv.medianBlur(gray, 5)
    # gray = cv.equalizeHist(gray)
    circles = cv.HoughCircles(gray,
                              cv.HOUGH_GRADIENT,
                              1,
                              20,
                              param1=param1,
                              param2=param2,
                              minRadius=minRadius,
                              maxRadius=maxRadius)

    if circles is not None:
        circles = np.int32(np.around(circles))
        rs = []
        for c in circles[0, :]:
            rs.append(c[2])
        max_id = rs.index(max(rs))
        for c in circles[0, :]:
            if rs[max_id] == c[2]:
                # cv.circle(img, (c[0],c[1]), c[2], (0,0,255), 2)
                # cv.circle(img, (c[0],c[1]), 2, (255,0,0), 2)
                # 矩形框选
                ix = c[0] - c[2] - bias
                iy = c[1] - c[2] - bias
                ex = c[0] + c[2] + bias
                ey = c[1] + c[2] + bias
                if ix == -bias and iy == -bias and ex == bias and ey == bias:
                    return None, None, None
                if c[2] > 30:  # > 90
                    return 'locked', roi[iy:ey + 1,
                                         ix:ex + 1], [ix, iy, ex, ey]
                else:
                    return 'captured', roi[iy:ey + 1,
                                           ix:ex + 1], [ix, iy, ex, ey]
    else:
        cv.imshow('camera', img)
        return None, None, None
Example #13
0
 def __blur(src, type, radius):
     """Softens an image using one of several filters.
     Args:
         src: The source mat (numpy.ndarray).
         type: The blurType to perform represented as an int.
         radius: The radius for the blur as a float.
     Returns:
         A numpy.ndarray that has been blurred.
     """
     if (type is BlurType.Box_Blur):
         ksize = int(2 * round(radius) + 1)
         return cv2.blur(src, (ksize, ksize))
     elif (type is BlurType.Gaussian_Blur):
         ksize = int(6 * round(radius) + 1)
         return cv2.GaussianBlur(src, (ksize, ksize), round(radius))
     elif (type is BlurType.Median_Filter):
         ksize = int(2 * round(radius) + 1)
         return cv2.medianBlur(src, ksize)
     else:
         return cv2.bilateralFilter(src, -1, round(radius), round(radius))
Example #14
0
  def get_paper_contour(self, orig):
    # resize the image for faster computation.
    image = orig.copy()
    ratio = image.shape[0] / 500.0
    image = imutils.resize(image, height = 500)

    # Process the image to find edges
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.bilateralFilter(gray, 11, 17, 17)
    edges = cv2.Canny(gray, 50, 150)

    if self.PRINT_PROCESS:
      self.showarr(gray)
      self.showarr(edges)

    # Get the ballotContour from the edges -- the largest connected rectangle.
    _, contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    contours = sorted(contours, key = cv2.contourArea, reverse=True)[:5]
    ballotContour = None
    for c in contours:
      # approximate the contour
      perimeter = cv2.arcLength(c, True)
      approx = cv2.approxPolyDP(c, 0.02 * perimeter, True)
    
      # if our approximated contour has four points, then
      # we can assume that we have found our screen
      if len(approx) == 4:
        ballotContour = approx
        break

    if ballotContour is None:
      raise ValueError('Could not determine ballot border. Make sure the ballot is on a solid dark background, fully in the image.')

    # Draw the contour
    if self.PRINT_PROCESS:
      cv2.drawContours(image, [ballotContour], -1, (0, 255, 0), 1)
      self.showarr(image)

    # Reshape, scale, and return
    ballotContour = ballotContour.reshape(4,2) * ratio
    return ballotContour
Example #15
0
def get_diamonds(image):
    """get the points of the diamonds from the supplied GRAYSCALE image

    :param image: image in GRAYSCALE
    :type image: cv2 image
    :return: list of diamonds as contours
    :rtype: float32
    """
    # threshold the image
    thresh = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                   cv2.THRESH_BINARY, 47, 1)

    # blur the image
    blurred = filters.apply_gaussian_blur(thresh, 9)
    bil = cv2.bilateralFilter(blurred, 11, 60, 60)

    # detect the edges
    canny = apply_canny(bil, 175, 190)

    # find the contours, in this case it should only find the diamonds
    return apply_find_contours(canny, 4, 80000, 5)
Example #16
0
def clahe(img, disp=False):
    """
    Apply CLACHE algorithm to image
    :param img: Input image of RGB format
    :param disp: Control display flag
    :output: filtered image
    """
    res = []
    clahe = cv2.createCLAHE(18, tileGridSize=(21, 21))
    for channel in np.dsplit(img, img.shape[-1]):
        res.append(clahe.apply(channel))
    res = np.dstack(res)

    k = 5
    t = 5
    res = cv2.GaussianBlur(res, (k, k), 0)  # Apply filter
    res = cv2.bilateralFilter(res, t, 75, 75)

    if disp:
        cv2.imshow("result", res)
    return res
Example #17
0
def clahe_tune(img):
    """
    Apply CLACHE algorithm to image with trackbars to tune
    :param img: Input image of RGB format
    :output: filtered image
    """
    res = []
    tg = cv2.getTrackbarPos("tg", "track") + 1
    clahe = cv2.createCLAHE(clipLimit=cv2.getTrackbarPos("clip", "track"),
                            tileGridSize=(tg, tg))
    for channel in np.dsplit(img, img.shape[-1]):
        res.append(clahe.apply(channel))
    res = np.dstack(res)

    k = 2 * cv2.getTrackbarPos("kernel", "track") - 1
    t = cv2.getTrackbarPos("t", "track")

    res = cv2.GaussianBlur(res, (k, k), 0)  # Apply filter
    res = cv2.bilateralFilter(res, t, 75, 75)

    cv2.imshow("result", res)
    return res
Example #18
0
def cartoonizer(img, num_down=2, num_bi=5):
    #Params
    #num_down = 2 #DOWNSAMPLE STEPS
    #num_bi = 5 # BILATERAL FILTERING STEPS
    img_c = img
    for ix in range(num_down):
        img_c = cv2.pyrDown(img)  # Pyramid Down : Downsampling
    # print(img_c.shape)

    for iy in range(num_bi):
        img_c = cv2.bilateralFilter(img_c, d=9, sigmaColor=9,
                                    sigmaSpace=7)  #Filtering
    # print(img_c.shape)

    #UPSAMPLING
    for ix in range(num_down):
        img_c = cv2.pyrUp(img_c)  # Pyramid Down : Downsampling
    # print(img_c.shape)

    #BLUR and Threshold
    img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)  # GRAY SCALE
    img_blur = cv2.medianBlur(img_gray, 7)  #MEDIAN BLUR
    img_edge = cv2.adaptiveThreshold(img_blur,
                                     255,
                                     cv2.ADAPTIVE_THRESH_MEAN_C,
                                     cv2.THRESH_BINARY,
                                     blockSize=9,
                                     C=2)

    img_c = cv2.resize(img_c, (800, 800))
    #RGB CONVERSION + BITWISE &
    img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
    # print(img_c.shape)
    # print(img_edge.shape)
    img_cartoon = cv2.bitwise_and(img_c, img_edge)

    stack = np.hstack([img, img_cartoon])
    return stack
def processImage(image):
    sketch = cv.imread(image)
    #sketch_flipped = cv.flip(sketch,0)
    imgray = cv.cvtColor(sketch, cv.COLOR_BGR2GRAY)
    imgray = cv.GaussianBlur(imgray, (5, 5), 0)
    imgray = cv.bilateralFilter(imgray, 11, 17, 17)
    cannyImg = getCanny(imgray)
    ret, thresh = cv.threshold(cannyImg, 127, 255, 0)
    # opencv function that finds all the edges (contours) in the image
    contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE,
                                          cv.CHAIN_APPROX_SIMPLE)
    # list of coordinates generated by the findCountours function.
    # there will be an even number of numbers in the coords list, since each coordinate's
    # x coordinate is placed in the list, then the y coordinate is placed in the list
    coords = list()
    numVertices = len(contours[0])
    for i in range(0, len(contours[0])):
        # x coordinate
        coords.append(contours[0][i][0][0])
        # y coordinate
        coords.append(contours[0][i][0][1])
    cv.waitKey(0)
    cv.destroyAllWindows()
    return coords
Example #20
0
    def detect(self, img,\
        lower_bound=np.array([110, 55, 5]),\
        upper_bound=np.array([130, 255, 255])):
        '''
        Detect switch ROI in an image.

        @img:
            np.array, input image.
        @lower_bound:
            np.array, lower bound for HSV color cut.
        @upper_bound:
            np.array, upper bound for HSV color cut.
        @return:
            (np.array, list), ROI image with bounding box and ROI bounding boxes, each is a tuple like (x, y, dx, dy).
        '''
        # Replace R and B channel
        blurred_img = cv.GaussianBlur(
            img, (5, 5), 5)  # Gaussian smoothing to remove noisy points
        b, g, r = cv.split(blurred_img)
        inv_img = cv.merge([r, g, b])
        hsv = cv.cvtColor(inv_img, cv.COLOR_BGR2HSV)

        # Crop for color mask
        mask = cv.inRange(hsv, lower_bound, upper_bound)

        # Crop for ROI
        h, s, v = cv.split(hsv)
        v = cv.bilateralFilter(v, 0, 15, 15)
        _, v = cv.threshold(v, 0, 255, cv.THRESH_OTSU)
        kernel = np.ones((5, 5), np.uint8)
        v = cv.morphologyEx(v, cv.MORPH_ERODE, kernel)
        # cv.imshow('value', v)
        points = self._get_pos_for_mask(v)
        xs, ys, dx, dy = cv.boundingRect(points)
        # img = cv.rectangle(img, (xs, ys), (xs+dx, ys+dy), (255,0,0), 2)
        roi_mask = mask[ys:ys + dy, xs:xs + dx]
        kernel = np.ones((3, 3), np.uint8)
        roi_mask = cv.morphologyEx(roi_mask, cv.MORPH_CLOSE,
                                   kernel)  # Trimming
        roi = img[ys:ys + dy, xs:xs + dx]

        _, contours, _ = cv.findContours(roi_mask, cv.RETR_TREE,
                                         cv.CHAIN_APPROX_SIMPLE)
        # centers = []
        boxes = []

        for i in range(len(contours)):
            # roi = cv.drawContours(roi, contours, i, (255,0,0), 1)
            points = [x[0] for x in contours[i]]
            area = cv.contourArea(contours[i])  # filter out small areas
            if area < self._min_area or area > self._max_area:
                continue
            xs, ys, dx, dy = cv.boundingRect(np.array(points))
            # centers.append(center)
            boxes.append((xs, ys, dx, dy))

        # debug
        # cv.imshow('mask', mask)
        # cv.imshow('roi', roi)
        # cv.imshow('roi_mask', roi_mask)
        # cv.imshow('hue', h)
        # cv.imshow('saturation', s)
        # cv.imshow('intensity', v)
        return roi, boxes
Example #21
0
def generate_saturation_contours(img_s,
                                 blur_kernel,
                                 mask,
                                 edge_mask,
                                 min_size,
                                 max_size,
                                 erode_iter,
                                 max_dilate_percentage,
                                 blur_type='gaussian'):
    img_shape = img_s.shape
    if blur_type == 'gaussian':
        img_s_blur = cv2.GaussianBlur(img_s, blur_kernel, 0, 0)
    elif blur_type == 'bilateral':
        img_s_blur = cv2.bilateralFilter(img_s, blur_kernel[0], blur_kernel[0],
                                         blur_kernel[0])
    else:
        raise ValueError("%s isn't a supported blur type" % blur_type)

    med = np.median(img_s_blur[img_s_blur > 0])

    img_s_blur = cv2.bitwise_and(img_s_blur, img_s_blur, mask=mask)
    mode_s = cv2.inRange(img_s_blur, med, 255)
    mode_s = cv2.erode(mode_s, block_strel, iterations=erode_iter)

    good_contours = cv2x.filter_contours_by_size(mode_s,
                                                 min_size=min_size,
                                                 max_size=max_size)

    # update the signal mask by removing the previous color candidates
    edge_mask = cv2.bitwise_and(edge_mask, edge_mask, mask=mask)
    contours = cv2x.filter_contours_by_size(edge_mask, min_size=21 * 21)
    edge_mask = np.zeros(img_shape, dtype=np.uint8)
    cv2.drawContours(edge_mask, contours, -1, 255, -1)
    edge_mask = cv2.dilate(edge_mask, (3, 3), iterations=2)

    good_sat_val_contours = []

    for i, c in enumerate(good_contours):
        filled_c_mask = np.zeros(img_shape, dtype=np.uint8)
        cv2.drawContours(filled_c_mask, [c], -1, 255, cv2.FILLED)

        new_mask, signal, orig = cv2x.find_border_by_mask(
            edge_mask,
            filled_c_mask,
            max_dilate_percentage=max_dilate_percentage,
            dilate_iterations=2)

        if not orig and signal > 0.7:
            _, contours, _ = cv2.findContours(new_mask, cv2.RETR_EXTERNAL,
                                              cv2.CHAIN_APPROX_SIMPLE)

            good_sat_val_contours.append(contours[0])
        elif signal > 0.7:
            good_sat_val_contours.append(c)
        else:
            pass  # ignore contour

    # The previous contours represent the final contour count,
    # but not their final shape/size. The final step is to use approxPolyDP, followed
    # by a few more dilations, but we won't re-draw and extract the contours, as that
    # would possibly connect some of them together. However, we will draw them for
    # the mask to exclude these regions from the next group of candidates
    final_sat_val_contours = []

    for c in good_sat_val_contours:
        peri = cv2.arcLength(c, True)
        smooth_c = cv2.approxPolyDP(c, 0.0035 * peri, True)

        single_cnt_mask = np.zeros(img_shape, dtype=np.uint8)
        cv2.drawContours(single_cnt_mask, [smooth_c], 0, 255, -1)

        # erode & dilate
        single_cnt_mask = cv2.dilate(single_cnt_mask,
                                     circle_strel,
                                     iterations=10)

        _, tmp_contours, _ = cv2.findContours(single_cnt_mask,
                                              cv2.RETR_EXTERNAL,
                                              cv2.CHAIN_APPROX_SIMPLE)

        final_sat_val_contours.append(tmp_contours[0])

    return final_sat_val_contours, edge_mask
Example #22
0
# while(1):
#     ret, frame = cap.read()

#     fgmask = fgbg.apply(frame)

#     cv2.imshow('frame',fgmask)
#     k = cv2.waitKey(30) & 0xff
#     if k == 27:
#         break

# cap.release()
# cv2.destroyAllWindows()


list_filepaths = []
for filename in os.listdir(r"background"):
    filepath = os.path.join(r"background", filename)
    list_filepaths.append(filepath)

if not os.path.isdir("background_blur"):
    os.mkdir("background_blur")

list_filepaths_blur = []
for filepath in list_filepaths:
    img = cv2.imread(filepath)
    filename = os.path.basename(filepath)
    blur = cv2.bilateralFilter(img,9,75,75)
    new_filepath = os.path.join(r"background_blur", filename)
    cv2.imwrite(new_filepath, blur)
    list_filepaths_blur.append(new_filepath)
Example #23
0

def rescaleFrame(frame, scale=0.75):
    width = int(frame.shape[1] * scale)
    height = int(frame.shape[0] * scale)
    dimensions = (width, height)

    return cv.resize(frame, dimensions, interpolation=cv.INTER_AREA)


init = cv.imread('imagen/wppstalkerlarge.jpg')
img = rescaleFrame(init, 0.3)
cv.imshow('stalker', img)

#Averaging blur
average = cv.blur(img, (3, 3))
cv.imshow('averageblur', average)

#Gaussian blur
gauss = cv.GaussianBlur(img, (3, 3), 0)
cv.imshow('gaussianBlur', gauss)

#Median Blur (good for Computer Vision)
medianBlur = cv.medianBlur(img, 3)
cv.imshow('medianBlur', medianBlur)

#Bilateral Blur (good as well for Computer Vision)
biBlur = cv.bilateralFilter(img, 10, 35, 25)
cv.imshow('bilateralBlur', biBlur)

cv.waitKey(0)
Example #24
0
import cv2.cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("imgs/sap.png")
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)

kernel = np.ones((5, 5), np.float32) / 25
dst = cv.filter2D(img, -1, kernel)
blur = cv.blur(img, (5, 5))
gauss = cv.GaussianBlur(img, (5, 5), 0)
median = cv.medianBlur(img, 5)
bilatera = cv.bilateralFilter(img, 9, 75, 75)

titles = [
    'original image', '2D convolution', 'blur', 'Gaussian', 'Median blur',
    'Bilatera filter'
]

image = [img, dst, blur, gauss, median, bilatera]

for i in range(len(titles)):
    plt.subplot(2, 3, i + 1), plt.imshow(image[i], "gray")
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])

plt.show()
    def generate_dataset(self):
        if self.var_emp_Department.get(
        ) == "Select Department" or self.var_emp_Name.get(
        ) == "" or self.va_Emp_Id.get() == "":
            messagebox.showerror("Error",
                                 "All Fields are required",
                                 parent=self.root)
        else:
            try:
                conn = mysql.connector.Connect(host="localhost",
                                               username="******",
                                               password="******",
                                               database="face_recognizer")
                my_cursor = conn.cursor()
                my_cursor.execute("select * from emp_table")
                myresult = my_cursor.fetchall()
                id = 0
                for x in myresult:
                    id += 1
                my_cursor.execute(
                    "update emp_table set Name=%s,Department=%s,DOB=%s,DOJ=%s,Gender=%s,Proof_type=%s,Proof_number=%s,Address=%s,Email=%s,Contact_no=%s,PhotoSample=%s where emp_id=%s",
                    (self.var_emp_Name.get(), self.var_emp_Department.get(),
                     self.var_emp_Dob.get(), self.var_emp_Doj.get(),
                     self.var_emp_Gender.get(), self.var_emp_Proof_type.get(),
                     self.var_emp_Proof_Number.get(),
                     self.var_emp_Address.get(), self.var_emp_Email.get(),
                     self.var_emp_Contact_No.get(), self.var_radio1.get(),
                     self.va_Emp_Id.get() == id + 1))
                conn.commit()
                self.fetch_data()
                self.reset_data()
                conn.close()

                # Load Predefined data on frontal face from opencv

                # Initializing the face and eye cascade classifiers from xml files
                face_cascade = cv2.CascadeClassifier(
                    'haarcascade_frontalface_default.xml')
                eye_cascade = cv2.CascadeClassifier(
                    'haarcascade_eye_tree_eyeglasses.xml')
                eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
                recognizer = cv2.face.LBPHFaceRecognizer_create()
                train_dataset = recognizer.read('trainer/trainer.yml')

                id = 2  #two persons
                names = [
                    '', 'unknownone', 'unknown', 'abc', 'xyz'
                ]  #key in names, start from the second place, leave first empty
                font = cv2.FONT_HERSHEY_SIMPLEX
                face_id = input('\n enter user id end press <return> ==>  ')

                # face_id = sys.argv[1]
                # Variable store execution state
                first_read = True

                # Starting the video capture
                cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
                ret, img = cap.read()
                count = 0
                while (ret):
                    ret, img = cap.read()
                    # Coverting the recorded image to grayscale
                    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                    # Applying filter to remove impurities
                    gray = cv2.bilateralFilter(gray, 5, 1, 1)

                    # Detecting the face for region of image to be fed to eye classifier
                    faces = face_cascade.detectMultiScale(gray,
                                                          1.3,
                                                          5,
                                                          minSize=(200, 200))

                    if (len(faces) > 0):
                        for (x, y, w, h) in faces:
                            img = cv2.rectangle(img, (x, y), (x + w, y + h),
                                                (0, 255, 0), 2)
                            id, confidence = recognizer.predict(gray[y:y + h,
                                                                     x:x + w])
                            # roi_face is face which is input to eye classifier
                            roi_face = gray[y:y + h, x:x + w]
                            roi_face_clr = img[y:y + h, x:x + w]
                            eyes = eye_cascade.detectMultiScale(roi_face,
                                                                1.3,
                                                                5,
                                                                minSize=(50,
                                                                         50))

                            conn = mysql.connector.Connect(
                                host="localhost",
                                username="******",
                                password="******",
                                database="face_recognizer")
                            my_cursor = conn.cursor()

                            # Examining the length of eyes object for eyes
                            if (len(eyes) >= 2):
                                # Check if program is running for detection
                                if (first_read):
                                    cv2.putText(img, "Eye detected press s",
                                                (70, 70),
                                                cv2.FONT_HERSHEY_PLAIN, 3,
                                                (0, 255, 0), 2)

                                else:
                                    count += 1
                                    cv2.putText(img, "Eyes open!", (70, 70),
                                                cv2.FONT_HERSHEY_PLAIN, 2,
                                                (255, 255, 255), 2)
                                    # print('click ' + str(count) + ' photo' + ' new face')
                                    if (train_dataset
                                        ) and train_dataset != False:
                                        id, confidence = recognizer.predict(
                                            gray[y:y + h, x:x + w])
                                        if (confidence > "30%"):
                                            cv2.putText(
                                                img, 'Already in the dataset',
                                                (x + 50, y + w + 20), font, 1,
                                                (255, 255, 0), 2)
                                        else:
                                            print('click ' + str(count) +
                                                  ' photo' + confidence +
                                                  ' new face' + id)
                                            print(confidence)
                                            cv2.imwrite(
                                                "data/User." + str(face_id) +
                                                '.' + str(count) + ".jpg",
                                                gray[y:y + h, x:x + w])
                                    else:
                                        cv2.putText(img,
                                                    'New face was detected',
                                                    (x + 50, y + w + 20), font,
                                                    1, (255, 255, 0), 1)
                                        print(
                                            'click ' + str(count) + ' photo' +
                                            ' new face', confidence, id)
                                        cv2.imwrite(
                                            "data/User." + str(face_id) + '.' +
                                            str(count) + ".jpg", gray[y:y + h,
                                                                      x:x + w])

                            else:
                                if (first_read):
                                    # To ensure if the eyes are present before starting
                                    cv2.putText(img, "No eyes detected",
                                                (70, 70),
                                                cv2.FONT_HERSHEY_PLAIN, 3,
                                                (0, 0, 255), 2)
                                else:
                                    cv2.waitKey(30)
                                    first_read = True

                    else:
                        cv2.putText(img, "No face detected", (100, 100),
                                    cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2)

                    # Controlling the algorithm with keys
                    cv2.imshow('img', img)
                    a = cv2.waitKey(1)
                    if (a == ord('q')):
                        break
                    elif (a == ord('s') and first_read):
                        # This will start the detection
                        first_read = False
                    elif count >= 100:  # Take 30 face sample and stop video
                        break
                cap.release()
                cv2.destroyAllWindows()
                messagebox.showinfo("Result",
                                    "Generating data set complted !!!!")

            except Exception as es:
                messagebox.showerror("Error",
                                     f"Due to:{str(es)}",
                                     parent=self.root)
img_blur_2 = cv2.GaussianBlur(img_invert, (23, 23), 0)


# The Dodge blend function divides the bottom layer by the inverted top layer.
# This lightens the bottom layer depending on the value of the top layer.
# We have the blurred image, which highlights the boldest edges.
def dodgeV2(image, mask):
    # inverting color with 255 - ...
    return cv2.divide(image, 255 - mask, scale=256)


final_img = dodgeV2(img_gray, img_blur)

final_img_2 = dodgeV2(img_gray, img_blur_2)
# final_img_2 = cv2.blur(final_img_2, (3, 3),0)
final_img_2 = cv2.bilateralFilter(final_img_2, 9, 50, 50)

# convert to bgr for showing the input and output in the same window
# this will convert the output from 2 channel to 3 channel
final_img = cv2.cvtColor(final_img, cv2.COLOR_GRAY2BGR)
# concatenate both the input and output
numpy_vertical_concat = np.concatenate((img, final_img), axis=1)

# cv2.imshow('image', final_img)
# cv2.imshow('image_2', final_img_2)

# displaying the sketch image
cv2.imshow('image', numpy_vertical_concat)
print("Press 'Esc' button to exit or Press 's' to save the image and exit.")

k = cv2.waitKey(0)
Example #27
0
                help="nearest multiple of 32 for resized height")
ap.add_argument("-p",
                "--padding",
                type=float,
                default=0.1,
                help="amount of padding to add to each border of ROI")
args = vars(ap.parse_args())

# load the input image and grab the image dimensions
image = cv2.imread(args["image"])
orig = image.copy()

image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
(thresh, image) = cv2.threshold(image, 127, 255,
                                cv2.THRESH_BINARY | cv2.THRESH_OTSU)
image = cv2.bilateralFilter(image, 9, 75, 75)

# Remove horizontal and vertical lines
horizontal_img = 255 - image
vertical_img = 255 - image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
horizontal_img = cv2.erode(horizontal_img, kernel, iterations=1)
horizontal_img = cv2.dilate(horizontal_img, kernel, iterations=1)

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
vertical_img = cv2.erode(vertical_img, kernel, iterations=1)
vertical_img = cv2.dilate(vertical_img, kernel, iterations=1)

mask_img = vertical_img + horizontal_img
image = np.bitwise_or(image, mask_img)
(origH, origW) = orig.shape[:2]
Example #28
0
# In this demo, we add a 50% noise to our original image and use a median filter.

img_m = cv2.imread(r'pictures\median.jpg')
img_m = cv2.cvtColor(img_m, cv2.COLOR_BGR2RGB)

median_filtering = cv2.medianBlur(img_m, 5)  # 中值过滤

# As we noted, the filters we presented earlier tend to blur edges. This is not the case for the bilateral filter, cv2.bilateralFilter(), which was defined for, and is highly effective at noise removal while preserving edges. But the operation is slower compared to other filters. We already saw that a Gaussian filter takes the a neighborhood around the pixel and finds its Gaussian weighted average. This Gaussian filter is a function of space alone, that is, nearby pixels are considered while filtering. It does not consider whether pixels have almost the same intensity value and does not consider whether the pixel lies on an edge or not. The resulting effect is that Gaussian filters tend to blur edges, which is undesirable.

# The bilateral filter also uses a Gaussian filter in the space domain, but it also uses one more (multiplicative) Gaussian filter component which is a function of pixel intensity differences. The Gaussian function of space makes sure that only pixels are ‘spatial neighbors’ are considered for filtering, while the Gaussian component applied in the intensity domain (a Gaussian function of intensity differences) ensures that only those pixels with intensities similar to that of the central pixel (‘intensity neighbors’) are included to compute the blurred intensity value. As a result, this method preserves edges, since for pixels lying near edges, neighboring pixels placed on the other side of the edge, and therefore exhibiting large intensity variations when compared to the central pixel, will not be included for blurring.

img_b = cv2.imread(r'pictures\bilateral.png')
img_b = cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)

bilateral_filtering = cv2.bilateralFilter(img_b, 9, 75, 75)  # 双边过滤

plt.subplot(241), plt.imshow(img), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(245), plt.imshow(avg_blur), plt.title('Avg_Blurred')
plt.xticks([]), plt.yticks([])
plt.subplot(246), plt.imshow(g_blur), plt.title('Gaussian_Blurred')
plt.xticks([]), plt.yticks([])
plt.subplot(243), plt.imshow(img_m), plt.title('Median_Original')
plt.xticks([]), plt.yticks([])
plt.subplot(247), plt.imshow(median_filtering), plt.title('Median_Filtering')
plt.xticks([]), plt.yticks([])
plt.subplot(244), plt.imshow(img_b), plt.title('Bilateral_Original')
plt.xticks([]), plt.yticks([])
plt.subplot(248), plt.imshow(bilateral_filtering), plt.title(
    'Bilateral_Filtering')
Example #29
0
def bi_demo(image):
    dst = cv.bilateralFilter(image, 0, 150, 10)
    #cv.imshow('bilateralFilter',dst)
    return dst
import os.path as path


def getPath(typeFile, file):
    folder = "Photos" if typeFile == 'img' else "Videos"
    return path.abspath(path.join(__file__, "../..",
                                  "Resources/"+folder, file))


img = cv.imread(getPath("img", "cats.jpg"))
cv.imshow("Cats", img)

# Averaging
average = cv.blur(img, (3, 3))
cv.imshow("Cats_average", average)

# Gaussian Blur
gauss = cv.GaussianBlur(img, (3, 3), 0)
cv.imshow("Gaussian blur", gauss)

# Median blur
median = cv.medianBlur(img, 3)
cv.imshow("Cats_median", median)

# Bilateral
bilateral = cv.bilateralFilter(img, 10, 35, 35)
cv.imshow("Cats_Bilateral", bilateral)


cv.waitKey(0)