Example #1
0
def watershed_demo(image):
    blurred = cv.pyrMeanShiftFiltering(image, 10, 100)
    gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    cv.imshow("binary", binary)

    kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
    mb = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel, iterations=2)
    sure_bg = cv.dilate(binary, kernel, iterations=3)
    cv.imshow("mor", sure_bg)

    dist = cv.distanceTransform(mb, cv.DIST_L2, 3)
    dist_output = cv.normalize(dist, 0, 1.0, cv.NORM_MINMAX)
    cv.imshow("dist", dist_output * 50)

    ret, surface = cv.threshold(dist, dist.max() * 0.6, 255, cv.THRESH_BINARY)
    cv.imshow("interface", surface)

    surface_fg = np.uint8(surface)
    unknow = cv.subtract(sure_bg, surface_fg)
    ret, markers = cv.connectedComponents(surface_fg)
    print(ret)

    markers += 1
    markers[unknow == 255] = 0
    markers = cv.watershed(image, markers=markers)
    image[markers == -1] = [0, 0, 255]
    cv.imshow("result", image)
Example #2
0
def watershed(image, image_color):
    print('watershed', image.shape)
    cv2.imshow('Image', image)
    gradiente = segmentar_iterativo(image)
    cv2.imshow('Gradiente', gradiente)
    gradiente_inverso = image_not(gradiente)
    cv2.imshow('Gradiente inverso', gradiente_inverso)

    kernel = np.ones((3, 3), np.uint8)
    thresh = gradiente_inverso
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)

    gradiente_erode = cv2.erode(opening, kernel, iterations=13)
    cv2.imshow('Gradiente erode', gradiente_erode)

    gradiente_erode = np.uint8(gradiente_erode)
    unknown = cv2.subtract(gradiente_inverso, gradiente_erode)
    cv2.imshow('gradiente_inverso - gradiente_erode', unknown)

    ret, markers = cv2.connectedComponents(gradiente_erode)
    # gradiente_inverso é a imagem dos limites da barragem
    markers = markers + 1
    markers[unknown == 255] = 0
    # markers[markers >= 1] = 250
    cv2.imshow('markers', markers)

    markers = cv2.watershed(image_color, markers)
    image_color[markers == -1] = [255, 255, 0]
    cv2.imshow('Resultado - Watershed', image_color)

    cv2.waitKey(0)
Example #3
0
def s2(img):  #segmentacionWarershed
    img = img
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(gray, 0, 255,
                                cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    # Eliminación del ruido
    kernel = np.ones((3, 3), np.uint8)
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
    # Encuentra el área del fondo
    sure_bg = cv2.dilate(opening, kernel, iterations=3)
    # Encuentra el área del primer
    dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
    ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(),
                                 255, 0)
    # Encuentra la región desconocida (bordes)
    sure_fg = np.uint8(sure_fg)
    unknown = cv2.subtract(sure_bg, sure_fg)
    # Etiquetado
    ret, markers = cv2.connectedComponents(sure_fg)
    # Adiciona 1 a todas las etiquetas para asegurra que el fondo sea 1 en lugar de cero
    markers = markers + 1
    # Ahora se marca la región desconocida con ceros
    markers[unknown == 255] = 0
    markers = cv2.watershed(img, markers)
    img[markers == -1] = [255, 0, 0]
    return img
Example #4
0
    def watershed(self, _img=None):
        # # 灰度和二值转换
        _img = self.img if _img is None else _img
        _gray = cv2.cvtColor(_img, cv2.COLOR_BGR2GRAY)
        _, _binary = cv2.threshold(_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
        # # 形态学操作
        # # # 形态学操作卷积核
        _kernel = np.ones((3, 3), np.uint8)
        # # # 开运算去噪(去掉椒盐噪声的影响)
        _opening = cv2.morphologyEx(_binary, cv2.MORPH_OPEN, _kernel, iterations=2)
        # # # 如果能画出背景和前景, 分割算法会很好
        # # # 考虑到数据量的原因, 使用程序 机械的找出
        # # # 找出一定是背景的部分 膨胀操作: 扩大图形区的面积
        _sure_bg = cv2.dilate(_opening, _kernel, iterations=3)
        # cv_show(_sure_bg)
        # # 距离变换函数: 对原始图像进行计算 之后二值处理, 获取前景
        # # 该函数的第一个参数只能是单通道的二值的图像, 第二个参数是距离方法
        # # 计算图像上255点与最近的0点之间的距离 DIST_L2应是欧氏距离, 会输出小数
        # # DIST_L1应是哈密顿距离, 不会有小数
        _dist_transform = cv2.distanceTransform(_opening, cv2.DIST_L1, 5)
        # cv_show(_dist_transform)
        # # 距离变换之后做一二值变换, 得到大概率是图像前景的点
        _, _sure_fg = cv2.threshold(_dist_transform, 0.5 * _dist_transform.max(), 255, cv2.THRESH_BINARY)
        # # 转换类型, 否则会很危险
        _sure_fg = np.uint8(_sure_fg)
        # cv_show(_sure_fg)
        # # 绘制unknown区 交给算法, 自下而上的洪泛算法
        _unknown = cv2.subtract(_sure_bg, _sure_fg)
        # cv_show(_unknown)
        _, _markers = cv2.connectedComponents(_sure_fg)
        _markers = _markers + 1
        _markers[_unknown == 255] = 0
        _img1 = _img.copy()
        _markers = cv2.watershed(_img1, _markers)

        # # 圈出来 之后可以根据结果将一部分的值变为黑色
        def random_color(a: int):
            return np.random.randint(0, 255, (a, 3))

        _markers_label = np.unique(_markers)
        _colors = random_color(_markers_label.size)
        for _mark, _color in zip(_markers_label, _colors):
            _img1[_markers == _mark] = _color
        # # 展示
        cv_show(_img1)
Example #5
0
def watershed(image, image_color):
    gradiente = segmentar_iterativo(image)
    gradiente_inverso = image_not(gradiente)

    kernel = np.ones((3, 3), np.uint8)
    thresh = gradiente_inverso
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)

    gradiente_erode = cv2.erode(opening, kernel, iterations=13)

    gradiente_erode = np.uint8(gradiente_erode)
    unknown = cv2.subtract(gradiente_inverso, gradiente_erode)

    ret, markers = cv2.connectedComponents(gradiente_erode)

    markers = markers + 1
    markers[unknown == 255] = 0

    markers = cv2.watershed(image_color, markers)
    image_color[markers == -1] = [255, 255, 0]
    return image_color
Example #6
0
def watershedAlgorithm(image):

    img = cv.imread(image)
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    ret, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU)

    # noise removal
    kernel = np.ones((5, 5), np.uint8)
    opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2)

    # sure background area
    sure_bg = cv.dilate(opening, kernel, iterations=3)

    # Finding sure foreground area
    dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5)
    ret, sure_fg = cv.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)

    # Finding unknown region
    sure_fg = np.uint8(sure_fg)
    unknown = cv.subtract(sure_bg, sure_fg)

    # Marker labelling
    ret, markers = cv.connectedComponents(sure_fg)

    # Add one to all labels so that sure background is not 0, but 1
    markers = markers + 1

    # Now, mark the region of unknown with zero
    markers[unknown == 255] = 0

    markers = cv.watershed(img, markers)
    img[markers == -1] = [255, 0, 0]



    return img
def watershed(img, img_gray):
#     mean = np.average(img_gray)
#     _, thresh1 = cv2.threshold(img_gray,mean,255,cv2.THRESH_BINARY_INV)
#     _, thresh2 = cv2.threshold(img_gray,200,255,cv2.THRESH_BINARY)
#     thresh = np.bitwise_or(thresh1, thresh2)
    _, thresh = cv2.threshold(img_gray,np.average(img_gray)-40,255,cv2.THRESH_BINARY_INV)

    kernel = np.ones((3,3),np.uint8)
    opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel,iterations=2)

    sure_bg = cv2.dilate(opening,kernel,iterations=2)

    dist_transform = cv2.distanceTransform(sure_bg,cv2.DIST_L2,5)
    _, sure_fg = cv2.threshold(dist_transform,0.5*dist_transform.max(),255,0)
    sure_fg = np.uint8(sure_fg)

    unknown = cv2.subtract(sure_fg, sure_bg)

    ret, markers = cv2.connectedComponents(unknown)
    markers = markers + 1
    markers[unknown == 255] = 0

    markers = cv2.watershed(img,markers)
    return dist_transform
Example #8
0
dist_transform = cv2.distanceTransform(sure_bg, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255,
                             0)
sure_fg = np.uint8(sure_fg)

# Background에서 Foregrand를 제외한 영역을 Unknow영역으로 파악
unknown = cv2.subtract(sure_bg, sure_fg)
# unknown = sure_bg

# FG에 Labelling작업
ret, markers = cv2.connectedComponents(sure_fg)
markers = markers + 1
markers[unknown == 255] = 0

# watershed를 적용하고 경계 영역에 색지정
markers = cv2.watershed(img, markers)
img[markers == -1] = [255, 0, 0]

images = [
    gray, thresh, sure_bg, dist_transform, sure_fg, unknown, markers, img
]
titles = [
    'Gray', 'Binary', 'Sure BG', 'Distance', 'Sure FG', 'Unknow', 'Markers',
    'Result'
]

for i in range(len(images)):
    plt.subplot(2, 4, i + 1), plt.imshow(images[i]), plt.title(
        titles[i]), plt.xticks([]), plt.yticks([])

plt.show()