Example #1
0
def find_epipolar_line_end_points(img, F, p):
    img_width = img.shape[1]
    el = np.dot(F, np.array([p[0], p[1], 1]).reshape(3, 1))
    p1, p2 = (0, -el[2] / el[1]), (img.shape[1],
                                   (-img_width * el[0] - el[2]) / el[1])
    _, p1, p2 = cv2.clipLine((0, 0, img.shape[1], img.shape[0]), p1, p2)
    return p1, p2
Example #2
0
 def draw_line(self, img, pixmapper, pt1, pt2, colour, linewidth):
     '''draw a line on the image'''
     pix1 = pixmapper(pt1)
     pix2 = pixmapper(pt2)
     (width, height) = image_shape(img)
     (ret, pix1, pix2) = cv2.clipLine((0, 0, width, height), pix1, pix2)
     if ret is False:
         if len(self._pix_points) == 0:
             self._pix_points.append(None)
         self._pix_points.append(None)
         return
     cv2.line(img, pix1, pix2, colour, linewidth)
     cv2.circle(img, pix2, linewidth * 2, colour)
     if len(self._pix_points) == 0:
         self._pix_points.append(pix1)
     self._pix_points.append(pix2)
     if self.arrow:
         xdiff = pix2[0] - pix1[0]
         ydiff = pix2[1] - pix1[1]
         if (xdiff * xdiff +
                 ydiff * ydiff) > 400:  # the segment is longer than 20 pix
             SlipArrow(
                 self.key, self.layer,
                 (int(pix1[0] + xdiff / 2.0), int(pix1[1] + ydiff / 2.0)),
                 self.colour, self.linewidth,
                 math.atan2(ydiff, xdiff) + math.pi / 2.0).draw(img)
Example #3
0
def draw_seg(img, pt1, pt2, color):
    h, w = img.shape[:2]
    (ret, pt1, pt2) = cv.clipLine((0, 0, w, h), cvPoint(pt1), cvPoint(pt2))
    if ret == False:
        return
    rr, cc = skdraw.line(int(pt1[1]), int(pt1[0]), int(pt2[1]), int(pt2[0]))
    img[rr, cc] = color
Example #4
0
    def draw_line(self, line: Line):
        is_zero_normal_vector = False
        v = line.normal_vector
        if (0 - 1e-7) < v[0] < (0 + 1e-7): is_zero_normal_vector = True
        if (0 - 1e-7) < v[1] < (0 + 1e-7): is_zero_normal_vector = True

        if not is_zero_normal_vector:
            zero_as_math = image_to_math(Point([0, 0]), self.width,
                                         self.height)[0]
            width_as_math = image_to_math(Point([self.width, self.width]),
                                          self.width, self.width)[0]

            first_point_math = Point(
                [zero_as_math, int(line.get_y(zero_as_math))])
            last_point_math = Point(
                [width_as_math, int(line.get_y(width_as_math))])

            first_point = math_to_image(first_point_math, self.width,
                                        self.height)
            last_point = math_to_image(last_point_math, self.width,
                                       self.height)

            image_dimension = (0, 0, self.width, self.height)
            clipped_line = cv.clipLine(
                image_dimension, (int(first_point[0]), int(first_point[1])),
                (int(last_point[0]), int(last_point[1])))
            if clipped_line[0]:
                cv.line(self.image, clipped_line[1], clipped_line[2],
                        (120, 0, 190))
def calculate_pointing(fingertip, p3, dimensions, d_objects):
    l1 = gesture.calc_line(tuple(p3), tuple(fingertip))
    l2 = gesture.calc_line((0, dimensions[0]), (dimensions[1], dimensions[0]))
    inters = gesture.intersection(l1, l2)

    if inters:
        # check pointing to target object
        p3_int = (int(p3[0]), int(p3[1]))
        inters_int = (int(inters[0]), int(inters[1]))

        # check pointing quality to objects
        pointing_qualities_color = []
        for d_obj in d_objects:
            color, bb_wh, bb = d_obj[0], d_obj[1], d_obj[2]
            retval, intersection1, intersection2 = cv.clipLine(
                bb_wh, tuple(p3_int), inters_int)
            if retval:
                pointing_quality = gesture.calc_poiting_probability(
                    bb, intersection1, intersection2)
                pointing_qualities_color.append([pointing_quality, color])

        if len(pointing_qualities_color) > 0:
            best_pq = max(pointing_qualities_color, key=lambda x: x[1])
            return True, best_pq
        else:
            return False, [None, None]

    else:
        return None, [None, None]
Example #6
0
def clipped_line_points(image, slope, intercept):
    y, x = image.shape
    intercept = int(intercept * (y - 1))
    pt1 = (0, intercept)
    pt2 = (x, int(slope * x) + intercept)
    visible, pt1, pt2 = cv2.clipLine((0, 0, x, y), pt1, pt2)
    xval, yval = tuple(zip(pt1, pt2))
    return xval, yval
 def draw_line(self, img, pixmapper, pt1, pt2, colour, linewidth):
     '''draw a line on the image'''
     pix1 = pixmapper(pt1)
     pix2 = pixmapper(pt2)
     (ret, pix1, pix2) = cv2.clipLine((0, 0, img.shape[1], img.shape[0]), pix1, pix2)
     if ret is False:
         return
     cv2.line(img, pix1, pix2, colour, linewidth)
     cv2.circle(img, pix2, linewidth*2, colour)
Example #8
0
 def draw_line(self, img, pixmapper, pt1, pt2, colour, linewidth):
     '''draw a line on the image'''
     pix1 = pixmapper(pt1)
     pix2 = pixmapper(pt2)
     (width, height) = image_shape(img)
     (ret, pix1, pix2) = cv2.clipLine((0, 0, width, height), pix1, pix2)
     if ret is False:
         return
     cv2.line(img, pix1, pix2, colour, linewidth)
     cv2.circle(img, pix2, linewidth * 2, colour)
def DrawLineOnImage(img, l):
    d0 = 0
    #left of image
    d1 = img.shape[1] - 1
    #right of image
    y0 = int(-(l[0] * d0 + l[2]) / l[1])
    y1 = int(-(l[0] * d1 + l[2]) / l[1])
    _, pt1, pt2 = cv2.clipLine((0, 0, img.shape[1], img.shape[0]), (d0, y0),
                               (d1, y1))
    cv2.line(img, pt1, pt2, (0, 255, 0), 4)
    return
Example #10
0
 def draw_line(self, img, pixmapper, pt1, pt2, colour, linewidth):
     '''draw a line on the image'''
     pt1 = mp_util.constrain_latlon(pt1)
     pt2 = mp_util.constrain_latlon(pt2)
     pix1 = pixmapper(pt1)
     pix2 = pixmapper(pt2)
     (width, height) = image_shape(img)
     (ret, pix1, pix2) = cv2.clipLine((0, 0, width, height), pix1, pix2)
     if ret is False:
         return
     cv2.line(img, pix1, pix2, colour, linewidth)
def line3d(out, pt1, pt2, color=(0x80, 0x80, 0x80), thickness=1):
    """draw a 3d line from pt1 to pt2"""
    p0 = project(pt1.reshape(-1, 3))[0]
    p1 = project(pt2.reshape(-1, 3))[0]
    if np.isnan(p0).any() or np.isnan(p1).any():
        return
    p0 = tuple(p0.astype(int))
    p1 = tuple(p1.astype(int))
    rect = (0, 0, out.shape[1], out.shape[0])
    inside, p0, p1 = cv2.clipLine(rect, p0, p1)
    if inside:
        cv2.line(out, p0, p1, color, thickness, cv2.LINE_AA)
Example #12
0
def line3d(out, pt1, pt2, color=(0x80, 0x80, 0x80), thickness=1):
    """draw a 3d line from pt1 to pt2"""
    p0 = project(pt1.reshape(-1, 3))[0]
    p1 = project(pt2.reshape(-1, 3))[0]
    if np.isnan(p0).any() or np.isnan(p1).any():
        return
    p0 = tuple(p0.astype(int))
    p1 = tuple(p1.astype(int))
    rect = (0, 0, out.shape[1], out.shape[0])
    inside, p0, p1 = cv2.clipLine(rect, p0, p1)
    if inside:
        cv2.line(out, p0, p1, color, thickness, cv2.LINE_AA)
Example #13
0
def isCrossingPedestrian(img,numberPlateCoordinates,resizingParameterNP,resizingParameter,zz):
	# print 1
	trueFalse = []

	# print len(numberPlateCoordinates)
	for i in range(len(numberPlateCoordinates)):
		# rectNP = cv2.rectangle(img, (int(numberPlateCoordinates[i][0]/resizingParameter), int(numberPlateCoordinates[i][1]/resizingParameter)-subY), (int((numberPlateCoordinates[i][0] + numberPlateCoordinates[i][3])/resizingParameter), int((numberPlateCoordinates[i][1] + numberPlateCoordinates[i][2] )/resizingParameter)+addH),( 0, 255, 0 ),2 )
		# rectNP = cv2.rectangle(img, (0,0), (imgShape[1], imgShape[0]), (255,0,255), 2)
		# print cv2.clipLine(rectNP, (0,int(zz[1])), (img.shape[1], int(zz[0]*img.shape[1] + zz[1])))
		# return cv2.clipLine(rectNP, (4,5), (8000,9000))[0]
		trueFalse.append(cv2.clipLine((int(numberPlateCoordinates[i][0]/resizingParameter) - subY,int(numberPlateCoordinates[i][1]/resizingParameter), int((numberPlateCoordinates[i][3])/resizingParameter), int((numberPlateCoordinates[i][2])/resizingParameter) + addH), (0,int(zz[1])), (img.shape[1], int(zz[0]*img.shape[1] + zz[1])))[0])
	return trueFalse
def tagged_data_to_ellipse_envelope(job_spec):
    tag_id, remote_data_filename, remote_cal_filename, start, degrees, radius_of_roi = job_spec

    with open(lcu.remote_to_local_filename(remote_data_filename), 'rb') as data_file:
        data_jpeg = data_file.read()

    with open(lcu.remote_to_local_filename(remote_cal_filename), 'rb') as cal_file:
        cal_jpeg = cal_file.read()

    data = cv2.imdecode(np.fromstring(data_jpeg, np.uint8), cv2.CV_LOAD_IMAGE_GRAYSCALE)
    cal = cv2.imdecode(np.fromstring(cal_jpeg, np.uint8), cv2.CV_LOAD_IMAGE_GRAYSCALE)

    delta = lcu.better_delta(data, cal)
    start = np.array(start)

    adjust = np.array([int(radius_of_roi), int(radius_of_roi/2)], dtype=np.int32)

    retval, roi_corner, roi_far_corner = cv2.clipLine(
        (0, 0, 512, 384),
        tuple(start - adjust),
        tuple(start + adjust),
    )

    rotate_matrix = cv2.getRotationMatrix2D(tuple(start), degrees, 1)
    roi = cv2.warpAffine(delta, rotate_matrix, (512, 384))[
        roi_corner[1]:roi_far_corner[1],
        roi_corner[0]:roi_far_corner[0]
    ]
    roi = cv2.cvtColor(roi, cv2.COLOR_GRAY2RGB)

    roi_corner = np.array(roi_corner)
    start = start - roi_corner

    color = int(np.average(
        roi[start[1] - 2:start[1] + 2, start[0] - 2:start[0] + 2].astype(np.float32)
    ))

    scores = list()
    for x in range(20, 60):
        y_min = int(x/2.3)
        y_max = int(x/1.5)
        for y in range(y_min, y_max):
            template = np.zeros((y, x, 3), dtype=np.uint8)
            cv2.ellipse(img=template, box=((x // 2, y // 2), (x, y), 0),
                        color=(color, color, color), thickness=-1)
            match = cv2.minMaxLoc(cv2.matchTemplate(roi, template, cv2.TM_SQDIFF_NORMED))
            scores.append((match[0], (x,y), match[2]))

    good_scores = sorted(scores)[:10]
    best_score, ellipse_size, ellipse_corner = sorted(good_scores, key=lambda x: -x[1][0]*x[1][1])[0]

    return (tag_id, ellipse_size, color)
Example #15
0
def bresenham_march(img, p1, p2):
    x1 = p1[0]
    y1 = p1[1]
    x2 = p2[0]
    y2 = p2[1]
    #tests if any coordinate is outside the image
    if ( 
        x1 >= img.shape[0]
        or x2 >= img.shape[0]
        or y1 >= img.shape[1]
        or y2 >= img.shape[1]
    ): #tests if line is in image, necessary because some part of the line must be inside, it respects the case that the two points are outside
        if not cv2.clipLine((0, 0, *img.shape), p1, p2):
            print("not in region")
            return

    steep = math.fabs(y2 - y1) > math.fabs(x2 - x1)
    if steep:
        x1, y1 = y1, x1
        x2, y2 = y2, x2

    # takes left to right
    also_steep = x1 > x2
    if also_steep:
        x1, x2 = x2, x1
        y1, y2 = y2, y1

    dx = x2 - x1
    dy = math.fabs(y2 - y1)
    error = 0.0
    delta_error = 0.0
    # Default if dx is zero
    if dx != 0:
        delta_error = math.fabs(dy / dx)

    y_step = 1 if y1 < y2 else -1

    y = y1
    ret = []
    for x in range(x1, x2):
        p = (y, x) if steep else (x, y)
        if p[0] < img.shape[0] and p[1] < img.shape[1]:
            ret.append((p, img[p]))
        error += delta_error
        if error >= 0.5:
            y += y_step
            error -= 1
    if also_steep:  # because we took the left to right instead
        ret.reverse()
    return ret
Example #16
0
    def clipLine(self, point1, point2, shape):
        if point1 is None or point2 is None:
            return False, point1, point2

        if (-65535 >= point1).any() or (point1 >= 65535).any():
            return False, point1, point2

        if (-65535 >= point2).any() or (point2 >= 65535).any():
            return False, point1, point2

        point1 = point1.astype(int)
        point2 = point2.astype(int)
        ret, pt1, pt2 = cv2.clipLine((0, 0, shape[1], shape[0]), tuple(point1),
                                     tuple(point2))
        return ret, pt1, pt2
Example #17
0
def in_line(x, y, lr):
    # x = x
    # y = y
    if lr == 'left':
        x1, x2 = x, WIDTH
        y1, y2 = y, y + 1

        pt1 = R_PNT, 0
        pt2 = WIDTH, HEIGHT

        imgRect = (x, y, x2 - x1, y2 - y1)
        retval, rpt1, rpt2 = cv2.clipLine(imgRect, pt1, pt2)

    elif lr == 'right':
        x1, x2 = x, WIDTH
        y1, y2 = y, y + 1

        pt1 = L_PNT, 0
        pt2 = 0, HEIGHT

        imgRect = (x, y, x2 - x1, y2 - y1)
        retval, rpt1, rpt2 = cv2.clipLine(imgRect, pt1, pt2)

    return retval
Example #18
0
 def draw_line(self, img, pixmapper, pt1, pt2, colour, linewidth):
     '''draw a line on the image'''
     pix1 = pixmapper(pt1)
     pix2 = pixmapper(pt2)
     (ret, pix1, pix2) = cv2.clipLine((0, 0, img.shape[1], img.shape[0]), pix1, pix2)
     if ret is False:
         if len(self._pix_points) == 0:
             self._pix_points.append(None)
         self._pix_points.append(None)
         return
     cv2.line(img, pix1, pix2, colour, linewidth)
     cv2.circle(img, pix2, linewidth*2, colour)
     if len(self._pix_points) == 0:
         self._pix_points.append(pix1)
     self._pix_points.append(pix2)
Example #19
0
 def draw_line(self, img, pixmapper, pt1, pt2, colour, linewidth):
     '''draw a line on the image'''
     pix1 = pixmapper(pt1)
     pix2 = pixmapper(pt2)
     (width, height) = image_shape(img)
     (ret, pix1, pix2) = cv2.clipLine((0, 0, width, height), pix1, pix2)
     if ret is False:
         if len(self._pix_points) == 0:
             self._pix_points.append(None)
         self._pix_points.append(None)
         return
     cv2.line(img, pix1, pix2, colour, linewidth)
     cv2.circle(img, pix2, linewidth * 2, colour)
     if len(self._pix_points) == 0:
         self._pix_points.append(pix1)
     self._pix_points.append(pix2)
def create_search_strip_set(vertical_interval, vertical_step, width_interval,
                            center_interval, clip_region):
    '''
	Returns a list of lane search strips (as LaneSearchStrip objects). There are five
	arguments. The first, vertical_interval, is a 2-tuple containing the vertical pixel
	range of the search strip set. Note the order as the other arguments are linearly
	interpolated from this range. The second argument, vertical_step, is the vertical
	pixel separation between each search strip. The width_interval and center_interval,
	arguments three and four respectively, define what the width of the strip will be at
	the start of the vertical interval and what the center of the strip will be (as a
	2-tuple) at the start of the vertical interval. The fifth argument, clip_region,
	is a 4-tuple defining the bounds of the image as (left, top, right, bottom) which is
	used to clip the search strips into the image.
	'''
    # define some convenient local variables
    vertical_range = vertical_interval[1] - vertical_interval[0]
    width_range = width_interval[1] - width_interval[0]
    center_range = center_interval[1] - center_interval[0]

    # initialize the set of search strips
    search_strips = []

    # walk through each vertical step
    for y in range(vertical_interval[0], vertical_interval[1] + vertical_step,
                   vertical_step):
        # determine the width and center of the strip using linear interpolation
        width = int(width_range * (y - vertical_interval[0]) /
                    vertical_range) + width_interval[0]
        center = int(center_range * (y - vertical_interval[0]) /
                     vertical_range) + center_interval[0]

        # define the strip as a segment
        segment = ((center - width, y), (center + width, y))

        # clip the segment to the image
        segment_is_in_image, left_point, right_point = cv2.clipLine(
            clip_region, segment[0], segment[1])

        # if the segment isn't in the image, don't add it
        if not segment_is_in_image:
            continue

        # add the clipped segment to the image
        search_strips.append(
            LaneSearchStrip(left_point, right_point[0] - left_point[0]))

    return search_strips
def getRansacLines(thresholded_image, lines):
    e1 = cv.getTickCount()
    test_image = np.transpose(thresholded_image)
    non_zero_points = np.nonzero(test_image)
    list_x_y_points = []
    for i in range(0, len(non_zero_points[0])):
        point = (non_zero_points[0][i], non_zero_points[1][i])
        list_x_y_points.append(point)

    sorted_by_second = sorted(list_x_y_points, key=lambda tup: tup[1])
    # print(sorted_by_second)
    intializepointsinROI(sorted_by_second, lines)

    for i in range(0, len(lines)):
        # print(lines[i].list_x_y_points)
        data = np.array(lines[i].list_x_y_points)
        line = cv.fitLine(data, cv.DIST_FAIR, 0, 0.01, 0.01)
        mult = max(gray_image.shape[0], gray_image.shape[1])
        startpoint = (int(line[2] - mult * line[0]),
                      int(line[3] - mult * line[1]))
        endpoint = (int(line[2] + mult * line[0]),
                    int(line[3] + mult * line[1]))
        points = cv.clipLine((0, 0, gray_image.shape[1], gray_image.shape[0]),
                             startpoint, endpoint)
        x_limit_max = max(lines[i].startpoint[0], lines[i].endpoint[0])
        x_limit_min = min(lines[i].startpoint[0], lines[i].endpoint[0])
        points = [list(i) for i in points[1:]]
        # print(points[][0])
        for i in range(0, len(points)):
            if (points[i][0] < x_limit_min):
                points[i][0] = x_limit_min
            elif (points[i][0] > x_limit_max):
                points[i][0] = x_limit_max
        # print(points)
        cv.line(gray_image, tuple(points[0]), tuple(points[1]), (0, 0, 255), 2)

    # # print(line)
    #cv.imshow("Result", gray_image)
    #cv.waitKey(0)
    #Write Image
    e2 = cv.getTickCount()
    time = (e2 - e1) / cv.getTickFrequency()
    print("Time for Fitting line")
    print(time)
def create_search_strip_set(vertical_interval, vertical_step, width_interval, center_interval, clip_region):
	'''
	Returns a list of lane search strips (as LaneSearchStrip objects). There are five
	arguments. The first, vertical_interval, is a 2-tuple containing the vertical pixel
	range of the search strip set. Note the order as the other arguments are linearly
	interpolated from this range. The second argument, vertical_step, is the vertical
	pixel separation between each search strip. The width_interval and center_interval,
	arguments three and four respectively, define what the width of the strip will be at
	the start of the vertical interval and what the center of the strip will be (as a
	2-tuple) at the start of the vertical interval. The fifth argument, clip_region,
	is a 4-tuple defining the bounds of the image as (left, top, right, bottom) which is
	used to clip the search strips into the image.
	'''
	# define some convenient local variables
	vertical_range = vertical_interval[1]-vertical_interval[0]
	width_range = width_interval[1]-width_interval[0]
	center_range = center_interval[1]-center_interval[0]

	# initialize the set of search strips
	search_strips = []

	# walk through each vertical step
	for y in range(vertical_interval[0], vertical_interval[1]+vertical_step, vertical_step):
		# determine the width and center of the strip using linear interpolation
		width = int(width_range*(y-vertical_interval[0])/vertical_range)+width_interval[0]
		center = int(center_range*(y-vertical_interval[0])/vertical_range)+center_interval[0]

		# define the strip as a segment
		segment = ((center-width, y), (center+width, y))

		# clip the segment to the image
		segment_is_in_image, left_point, right_point = cv2.clipLine(clip_region, segment[0], segment[1])

		# if the segment isn't in the image, don't add it
		if not segment_is_in_image:
			continue

		# add the clipped segment to the image
		search_strips.append(LaneSearchStrip(left_point, right_point[0]-left_point[0]))
	
	return search_strips
Example #23
0
 def draw_line(self, img, pixmapper, pt1, pt2, colour, linewidth):
     '''draw a line on the image'''
     pix1 = pixmapper(pt1)
     pix2 = pixmapper(pt2)
     (width, height) = image_shape(img)
     (ret, pix1, pix2) = cv2.clipLine((0, 0, width, height), pix1, pix2)
     if ret is False:
         if len(self._pix_points) == 0:
             self._pix_points.append(None)
         self._pix_points.append(None)
         return
     cv2.line(img, pix1, pix2, colour, linewidth)
     cv2.circle(img, pix2, linewidth*2, colour)
     if len(self._pix_points) == 0:
         self._pix_points.append(pix1)
     self._pix_points.append(pix2)
     if self.arrow:
         xdiff = pix2[0]-pix1[0]
         ydiff = pix2[1]-pix1[1]
         if (xdiff*xdiff + ydiff*ydiff) > 400: # the segment is longer than 20 pix
             SlipArrow(self.key, self.layer, (int(pix1[0]+xdiff/2.0), int(pix1[1]+ydiff/2.0)), self.colour,
                       self.linewidth, math.atan2(ydiff, xdiff)+math.pi/2.0).draw(img)
def image_matching(img_idx,
                   candidate_idx,
                   name_idx,
                   indexes,
                   features,
                   N=10000):
    '''
	In:
		img_idx: index of current image
		candidate_idx: numpy array of size m
		name_idx: K; [(name, start index, end index)]
		indexes: sum_N * 4 np matrix of index
		features: sum_N * 4; [np matrix]
		N: number of RANSAC iterations
	Out:
		fundamental_matrix: m * 3 * 3 np matrix, each row is a flat fundamental matrix
	'''
    img_name, img_start, img_end = name_idx[img_idx]
    fundamental_matrix = []
    inlier_number = []
    inlier_set = []
    epipolar_set = []
    for c in candidate_idx:
        # for each pair of matched images,
        # calculate fundamental matrix
        cand_name, cand_start, cand_end = name_idx[c]
        XY = []
        for i in range(img_start, img_end):
            # for each key point in current image,
            # find its inlier matched points in this candidate image
            x1, y1, _, _ = features[i]
            for j in indexes[i]:
                if j < cand_end and j >= cand_start:
                    x2, y2, _, _ = features[j]
                    XY.append([x1, y1, x2, y2])
        print('XY: {}'.format(len(XY)))
        # Use RANSAC
        # TODO estimate number of iteration needed
        # inlier, _ = ransac_single_step(XY)
        # print([inlier, len(XY)])
        # num_iteration = int(np.log(0.05)/np.log(1-(inlier/len(XY))**len(XY)))
        # print(num_iteration)
        # use RANSAC to approximate F
        F, e, inlier, inliers = ransac(XY, N)
        fundamental_matrix.append(F)
        epipolar_set.append(e)
        inlier_number.append(inlier)
        inlier_set.append(inliers)
        print('inliers: {}'.format(inlier))
    k = np.argmax(inlier_number)

    # plot epipolar line
    print(epipolar_set[k][0] / epipolar_set[k][0][-1])
    print(epipolar_set[k][1] / epipolar_set[k][1][-1])
    e1x, e1y, _ = epipolar_set[k][0] / epipolar_set[k][0][-1]
    e2x, e2y, _ = epipolar_set[k][1] / epipolar_set[k][1][-1]
    img1 = cv2.imread(os.path.join(DATA_DIR, img_name + '.jpg'))
    img2 = cv2.imread(os.path.join(DATA_DIR, name_idx[k][0] + '.jpg'))
    for pair in inlier_set[k]:
        x1, y1, x2, y2 = pair
        cv2.circle(img1, (int(x1), int(y1)), 1, (255, 255, 255), 5)
        cv2.circle(img2, (int(x2), int(y2)), 1, (255, 255, 255), 5)
        rect1 = (0, 0, img1.shape[1], img1.shape[0])
        _, pt1, pt2 = cv2.clipLine(rect1, (int(x1), int(y1)),
                                   (int(e1x), int(e1y)))
        cv2.line(img1, pt1, pt2, (255, 255, 255), 2)
        rect2 = (0, 0, img2.shape[1], img2.shape[0])
        _, pt1, pt2 = cv2.clipLine(rect2, (int(x2), int(y2)),
                                   (int(e2x), int(e2y)))
        cv2.line(img2, pt1, pt2, (255, 255, 255), 2)
    cv2.imwrite(img_name + '_' + img_name + '.jpg', img1)
    cv2.imwrite(img_name + '_' + name_idx[k][0] + '.jpg', img2)

    # sort fundamental matrix by number of inliers
    # n = len(inlier_number)
    # lst = list(range(n))
    # lst.sort(key=inlier_number.__getitem__)
    # fundamental_matrix = list(map(fundamental_matrix.__getitem__, lst))
    # inlier_number = list(map(inlier_number.__getitem__, lst))
    # inlier_set = list(map(inlier_set.__getitem__, lst))

    # return fundamental_matrix, inlier_number, inlier_set
    return candidate_idx[k], fundamental_matrix[k], inlier_number[
        k], inlier_set[k]
def getProjection(image : np.ndarray, mask : np.ndarray) -> np.ndarray:
    # Get contours
    contours, _ = cv2.findContours(image = mask, mode = cv2.RETR_TREE, method = cv2.CHAIN_APPROX_SIMPLE)    # check if RETR_LIST is better or other methods
                                                                                                            # check if grayscale is better than mask

    if not contours:
        # Log for no contours found
        loggingIt("No contours were found.")
        return False

    # Calculate biggest contour
    maxContourArea : np.uint16 = 0
    maxContourIndex : np.uint8 = 0
    for idx, cont in enumerate(contours):
        _, _, width, height = cv2.boundingRect(array = cont)
        area = width * height
        if area > maxContourArea:
            maxContourArea = area
            maxContourIndex = idx
    
    # Check if contour is big enough to be the board
    height, width = mask.shape
    percentage = maxContourArea / (width * height) * 100
    if percentage < 20:
        # Log for board not found
        loggingIt("Contour is too small to be the board.")
        return False
    
    # Get a blank image with only the contours
    contourImage = np.zeros_like(a = mask, dtype = np.uint8)
    cv2.drawContours(image = contourImage, contours = contours, contourIdx = maxContourIndex, color = (255))

    # Get lines through HoughTransformation
    lines = cv2.HoughLines(image = contourImage, rho = 1, theta = np.pi / 180, threshold = 60)

    if lines.size == 0:
        # Log for no HoughLines found
        loggingIt("No HoughLines were found.")
        return False

    # Calculate the coordinates of the found lines and append to list
    detectedLines : list = []
    for line in lines:
        (rho, theta) = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a*rho
        y0 = b*rho
        x1 = int(x0 + 1000*(-b))
        y1 = int(y0 + 1000*(a))
        x2 = int(x0 - 1000*(-b))
        y2 = int(y0 - 1000*(a))

        _, (x1, y1), (x2, y2) = cv2.clipLine(imgRect = (0, 0, width, height), pt1 = (x1, y1), pt2 = (x2, y2))
        detectedLines.append(np.array([x1, y1, x2, y2]))

    # Call to calculateBorderFromLines, just below
    corners = getCorners(lines = detectedLines)

    if not corners:
        # Log not enough corners found
        loggingIt("No corners were found.")
        return False

    cornersPicture = np.array([
                                (0, 0), 
                                (width, 0), 
                                (0, height), 
                                (width, height)
                            ])
    
    cornersPicture = np.float32(cornersPicture[:,np.newaxis,:]) # New dimension needed for opencv2 functions

    transform = cv2.getPerspectiveTransform(src = np.float32(corners), dst = cornersPicture)
    dst = cv2.warpPerspective(src = image, M = transform, dsize = (width, height))

    return dst
Example #26
0
import matplotlib.pyplot as plt
import cv2
import numpy as np
import Func

image = Func.create_canvas_matplotlib(400,400)

image = cv2.line(image, (0,0), (400,400), (255,0,0), 2)
image = cv2.rectangle(image, (0,0), (200,200), (0,255,0), 2)
ret, p1, p2 = cv2.clipLine((0, 0, 200, 200), (0, 0), (400, 400))
if ret:
    cv2.line(image, p1, p2, (0,255,255), 3)

Func.show_with_matplotlib(image, "test")

Example #27
0
 def clipToFrame(self):
     if self.frame is not None:
         rawStart, rawEnd = cv2.clipLine(self.frame, self.start, self.end)
         self.start = Point(rawStart)
         self.end = Point(rawEnd)
Example #28
0
def compute_map(state,
                height=960,
                width=1280,
                map_size=256,
                map_scale=3,
                fov=90.0,
                beacon_scale=100,
                pick_new_goal=False,
                only_visible_beacons=True,
                curr_goal=None):

    depth_buffer = state.depth_buffer

    player_x = state.game_variables[5]
    player_y = state.game_variables[6]
    player_z = state.game_variables[7]

    player_angle = state.game_variables[8]
    player_pitch = state.game_variables[9]
    player_roll = state.game_variables[10]

    canvas_size = 2 * map_size + 1
    vis_map = np.zeros((canvas_size, canvas_size, 3), dtype=np.uint8)
    simple_map = np.zeros((canvas_size, canvas_size), dtype=np.uint8)

    r = canvas_size
    offset = 225

    y1 = int(r * math.cos(math.radians(offset + player_angle)))
    x1 = int(r * math.sin(math.radians(offset + player_angle)))

    y2 = int(r * math.cos(math.radians(offset + player_angle - fov)))
    x2 = int(r * math.sin(math.radians(offset + player_angle - fov)))

    _, p1, p2 = cv2.clipLine((0, 0, canvas_size, canvas_size),
                             (map_size, map_size),
                             (map_size + x1, map_size + y1))
    _, p3, p4 = cv2.clipLine((0, 0, canvas_size, canvas_size),
                             (map_size, map_size),
                             (map_size + x2, map_size + y2))

    game_unit = 110.0 / 14
    ray_cast = (depth_buffer[height / 2] * game_unit) / float(map_scale)

    ray_points = [(map_size, map_size)]
    for i in range(canvas_size):
        d = ray_cast[int(float(width) / canvas_size * i - 1)]
        theta = (float(i) / canvas_size * fov)

        ray_y = int(d * math.sin(math.radians(offset - theta))) + map_size
        ray_x = int(d * math.cos(math.radians(offset - theta))) + map_size

        _, _, p = cv2.clipLine((0, 0, canvas_size, canvas_size),
                               (map_size, map_size), (ray_y, ray_x))
        ray_points.append(p)

    cv2.fillPoly(vis_map, np.array([ray_points], dtype=np.int32),
                 (255, 255, 255))
    cv2.fillPoly(simple_map, np.array([ray_points], dtype=np.int32), (1, 1, 1))

    for l in state.labels:
        object_relative_x = -l.object_position_x + player_x
        object_relative_y = -l.object_position_y + player_y
        object_relative_z = -l.object_position_z + player_z

        rotated_x = math.cos(
            math.radians(-player_angle)) * object_relative_x - math.sin(
                math.radians(-player_angle)) * object_relative_y
        rotated_y = math.sin(
            math.radians(-player_angle)) * object_relative_x + math.cos(
                math.radians(-player_angle)) * object_relative_y

        rotated_x = int(rotated_x / map_scale + map_size)
        rotated_y = int(rotated_y / map_scale + map_size)

        if (rotated_x >= 0 and rotated_x < canvas_size and rotated_y >= 0
                and rotated_y < canvas_size):
            color = (0, 0, 255)
            object_id = 2
            simple_map[rotated_x, rotated_y] = object_id
            cv2.circle(vis_map, (rotated_y, rotated_x), 2, color, thickness=-1)

    quantized_x = int(player_x / beacon_scale) * beacon_scale
    quantized_y = int(player_y / beacon_scale) * beacon_scale
    beacon_radius = 10

    beacons = []
    for bnx in range(-beacon_radius, beacon_radius + 1):
        for bny in range(-beacon_radius, beacon_radius + 1):
            beacon_x = quantized_x + bnx * beacon_scale
            beacon_y = quantized_y + bny * beacon_scale
            beacons.append((beacon_x, beacon_y))

    visble_beacons_world = []

    for b in beacons:
        object_relative_x = -b[0] + player_x
        object_relative_y = -b[1] + player_y

        rotated_x = math.cos(
            math.radians(-player_angle)) * object_relative_x - math.sin(
                math.radians(-player_angle)) * object_relative_y
        rotated_y = math.sin(
            math.radians(-player_angle)) * object_relative_x + math.cos(
                math.radians(-player_angle)) * object_relative_y

        rotated_x = int(rotated_x / map_scale + map_size)
        rotated_y = int(rotated_y / map_scale + map_size)

        if (rotated_x >= 0 and rotated_x < canvas_size and rotated_y >= 0
                and rotated_y < canvas_size):
            color = (255, 0, 0)
            object_id = 3
            show = True
            if simple_map[rotated_x, rotated_y] == 0:
                show = (only_visible_beacons != True)
            else:
                visble_beacons_world.append((b[0], b[1]))

            if show:
                simple_map[rotated_x, rotated_y] = object_id
                cv2.circle(vis_map, (rotated_y, rotated_x),
                           2,
                           color,
                           thickness=-1)

    if pick_new_goal:
        if len(visble_beacons_world) > 0:
            beacon_idx = random.randint(0, len(visble_beacons_world) - 1)
            """
            max_dist = 0
            for b in range(len(visble_beacons_world)):
                xdiff = visble_beacons_world[b][0] - player_x
                ydiff = visble_beacons_world[b][1] - player_y
                d = abs(xdiff) + abs(ydiff)
                if d > max_dist:
                    beacon_idx = b
                    max_dist = d
            """

            curr_goal = visble_beacons_world[beacon_idx]

    if curr_goal is not None:
        object_relative_x = -curr_goal[0] + player_x
        object_relative_y = -curr_goal[1] + player_y

        rotated_x = math.cos(
            math.radians(-player_angle)) * object_relative_x - math.sin(
                math.radians(-player_angle)) * object_relative_y
        rotated_y = math.sin(
            math.radians(-player_angle)) * object_relative_x + math.cos(
                math.radians(-player_angle)) * object_relative_y

        rotated_x = int(rotated_x / map_scale + map_size)
        rotated_y = int(rotated_y / map_scale + map_size)

        if (rotated_x >= 0 and rotated_x < canvas_size and rotated_y >= 0
                and rotated_y < canvas_size):
            color = (255, 255, 0)
            object_id = 4
            if simple_map[rotated_x, rotated_y] > 0:
                simple_map[rotated_x, rotated_y] = object_id
                cv2.circle(vis_map, (rotated_y, rotated_x),
                           2,
                           color,
                           thickness=-1)

    return vis_map, simple_map, curr_goal
Example #29
0
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), -1)

px1 = 250, 40
py1 = 250, 450

cv2.line(img, px1, py1, (255, 0, 0), 2)

px2 = 40, 250
py2 = 450, 250

cv2.line(img, px2, py2, (255, 0, 0), 2)

imgRect1 = (x1, y1, x2 - x1, y2 - y1)
imgRect2 = (x1, y1, x2 - x1, y2 - y1)

retval1, rpt1, rpt2 = cv2.clipLine(imgRect1, px1, py1)
retval2, rpt3, rpt4 = cv2.clipLine(imgRect2, px2, py2)

if retval1:
    cv2.circle(img, rpt1, radius=5, color=(0, 0, 0), thickness=-1)
    cv2.circle(img, rpt2, radius=5, color=(0, 0, 0), thickness=-1)

if retval2:
    cv2.circle(img, rpt3, radius=5, color=(0, 0, 0), thickness=-1)
    cv2.circle(img, rpt4, radius=5, color=(0, 0, 0), thickness=-1)

cv2.imshow('img', img)
cv2.waitKey()
cv2.destroyAllWindows()
Example #30
0
          'dark_gray': (50, 50, 50), 'light_gray': (220, 220, 220)}

# We create the canvas to draw: 300 x 300 pixels, 3 channels, uint8 (8-bit unsigned integers)
# We set background to black using np.zeros():
image = np.zeros((300, 300, 3), dtype="uint8")

# If you want another background color you can do the following:
image[:] = colors['light_gray']

# 1. We are going to see how cv2.clipLine() works
# Draw a rectangle and a line:
cv2.line(image, (0, 0), (300, 300), colors['green'], 3)
cv2.rectangle(image, (0, 0), (100, 100), colors['blue'], 3)

# We call the function cv2.clipLine():
ret, p1, p2 = cv2.clipLine((0, 0, 100, 100), (0, 0), (300, 300))

# cv2.clipLine() returns False if the line is outside the rectangle
# And returns True otherwise
if ret:
    cv2.line(image, p1, p2, colors['yellow'], 3)

# Show image:
show_with_matplotlib(image, 'cv2.clipLine()')

# Clean the canvas to draw again:
image[:] = colors['light_gray']

# 2. We are going to see how cv2.arrowedLine() works:
cv2.arrowedLine(image, (50, 50), (200, 50), colors['red'], 3, 8, 0, 0.1)
cv2.arrowedLine(image, (50, 120), (200, 120), colors['green'], 3, cv2.LINE_AA, 0, 0.3)
Example #31
0
def update_grid_map(state, height=960, width=1280,
                    map_size=256, map_scale=3, fov=90.0,
                    grid_scale=50, nodes = {}, edges = {}):

    depth_buffer = state.depth_buffer

    player_x = state.game_variables[5]
    player_y = state.game_variables[6]
    player_z = state.game_variables[7]

    player_angle = state.game_variables[8]
    player_pitch = state.game_variables[9]
    player_roll = state.game_variables[10]

    canvas_size = 2*map_size + 1
    simple_map = np.zeros((canvas_size, canvas_size), dtype=np.uint8)

    r = canvas_size
    offset = 225

    y1 = int(r * math.cos(math.radians(offset + player_angle)))
    x1 = int(r * math.sin(math.radians(offset + player_angle)))

    y2 = int(r * math.cos(math.radians(offset + player_angle - fov)))
    x2 = int(r * math.sin(math.radians(offset + player_angle - fov)))

    _, p1, p2 = cv2.clipLine((0, 0, canvas_size, canvas_size), (map_size, map_size),
                             (map_size + x1, map_size + y1))
    _, p3, p4 = cv2.clipLine((0, 0, canvas_size, canvas_size), (map_size, map_size),
                             (map_size + x2, map_size + y2))

    game_unit = 100.0/14
    ray_cast = (depth_buffer[height/2] * game_unit)/float(map_scale)

    ray_points = [ (map_size, map_size) ]
    for i in range(10, canvas_size-10):
        d = ray_cast[int(float(width)/canvas_size * i - 1)]
        theta = (float(i)/canvas_size * fov)

        ray_y = int(d * math.sin(math.radians(offset - theta))) + map_size
        ray_x = int(d * math.cos(math.radians(offset - theta))) + map_size

        _, _, p = cv2.clipLine((0, 0, canvas_size, canvas_size), (map_size, map_size),
                                                          (ray_y, ray_x))
        ray_points.append(p)

    cv2.fillPoly(simple_map, np.array([ray_points], dtype=np.int32), (1, 1, 1))

    quantized_x = int(player_x/grid_scale) * grid_scale
    quantized_y = int(player_y/grid_scale) * grid_scale
    beacon_radius = 10

    beacons = []
    for bnx in range(-beacon_radius, beacon_radius+1):
        for bny in range(-beacon_radius, beacon_radius+1):
            beacon_x = quantized_x + bnx * grid_scale
            beacon_y = quantized_y + bny * grid_scale
            beacons.append((beacon_x, beacon_y))

    visble_beacons_world = {}

    for b in beacons:
        object_relative_x = -b[0] + player_x
        object_relative_y = -b[1] + player_y

        rotated_x = math.cos(math.radians(-player_angle)) * object_relative_x - math.sin(math.radians(-player_angle)) * object_relative_y
        rotated_y = math.sin(math.radians(-player_angle)) * object_relative_x + math.cos(math.radians(-player_angle)) * object_relative_y

        rotated_x = int(rotated_x/map_scale + map_size)
        rotated_y = int(rotated_y/map_scale + map_size)

        if (rotated_x >= 0 and rotated_x < canvas_size and
            rotated_y >= 0 and rotated_y < canvas_size):
            if simple_map[rotated_x, rotated_y] != 0:
                visble_beacons_world[(b[0], b[1])] = True

    for b in visble_beacons_world:
        if b not in nodes:
            nodes[b] = True

        neighbors = [ (b[0], b[1] - grid_scale),
                      (b[0], b[1] + grid_scale),
                      (b[0] - grid_scale, b[1]),
                      (b[0] + grid_scale, b[1]),
                      (b[0] - grid_scale, b[1] - grid_scale),
                      (b[0] + grid_scale, b[1] + grid_scale),
                      (b[0] - grid_scale, b[1] + grid_scale),
                      (b[0] + grid_scale, b[1] - grid_scale),
                    ]

        for n in neighbors:
            if n in visble_beacons_world:
                if (b, n) not in edges:
                    edges[(b, n)] = True
                    edges[(n, b)] = True

                """
Example #32
0
def compute_map(state,
                height=960,
                width=1280,
                map_size=256,
                map_scale=3,
                fov=90.0,
                beacon_scale=50,
                pick_new_goal=False,
                only_visible_beacons=True,
                curr_goal=None,
                explored_goals={}):
    # Extract agent state from game
    depth_buffer = state.depth_buffer

    player_x = state.game_variables[5]
    player_y = state.game_variables[6]
    player_z = state.game_variables[7]

    player_angle = state.game_variables[8]
    player_pitch = state.game_variables[9]
    player_roll = state.game_variables[10]

    # Initialize maps
    canvas_size = 2 * map_size + 1
    vis_map = np.zeros((canvas_size, canvas_size, 3), dtype=np.uint8)
    simple_map = np.zeros((canvas_size, canvas_size), dtype=np.uint8)

    # Compute upper left and upper right extreme coordinates
    r = canvas_size
    offset = 225

    y1 = int(r * math.cos(math.radians(offset + player_angle)))
    x1 = int(r * math.sin(math.radians(offset + player_angle)))

    y2 = int(r * math.cos(math.radians(offset + player_angle - fov)))
    x2 = int(r * math.sin(math.radians(offset + player_angle - fov)))

    # Draw FOV boundaries
    _, p1, p2 = cv2.clipLine((0, 0, canvas_size, canvas_size),
                             (map_size, map_size),
                             (map_size + x1, map_size + y1))
    _, p3, p4 = cv2.clipLine((0, 0, canvas_size, canvas_size),
                             (map_size, map_size),
                             (map_size + x2, map_size + y2))

    # Ray cast from eye line to project depth map into 2D ray points
    game_unit = 100.0 / 14
    ray_cast = (depth_buffer[height / 2] * game_unit) / float(map_scale)

    ray_points = [(map_size, map_size)]
    for i in range(10, canvas_size - 10):
        d = ray_cast[int(float(width) / canvas_size * i - 1)]
        theta = (float(i) / canvas_size * fov)

        ray_y = int(d * math.sin(math.radians(offset - theta))) + map_size
        ray_x = int(d * math.cos(math.radians(offset - theta))) + map_size

        _, _, p = cv2.clipLine((0, 0, canvas_size, canvas_size),
                               (map_size, map_size), (ray_y, ray_x))
        ray_points.append(p)

    # Fill free space on 2D map with colour
    cv2.fillPoly(vis_map, np.array([ray_points], dtype=np.int32),
                 (255, 255, 255))  # NOQA
    cv2.fillPoly(simple_map, np.array([ray_points], dtype=np.int32), (1, 1, 1))

    quantized_x = int(player_x / beacon_scale) * beacon_scale
    quantized_y = int(player_y / beacon_scale) * beacon_scale
    beacon_radius = 10

    # Get beacons within range of current agent position
    beacons = []
    for bnx in range(-beacon_radius, beacon_radius + 1):
        for bny in range(-beacon_radius, beacon_radius + 1):
            beacon_x = quantized_x + bnx * beacon_scale
            beacon_y = quantized_y + bny * beacon_scale
            beacons.append((beacon_x, beacon_y))

    # Compute set of visible beacons and draw onto the map
    visble_beacons_world = []
    for b in beacons:
        object_relative_x = -b[0] + player_x
        object_relative_y = -b[1] + player_y

        rotated_x = math.cos(
            math.radians(-player_angle)) * object_relative_x - math.sin(
                math.radians(-player_angle)) * object_relative_y  # NOQA
        rotated_y = math.sin(
            math.radians(-player_angle)) * object_relative_x + math.cos(
                math.radians(-player_angle)) * object_relative_y  # NOQA

        rotated_x = int(rotated_x / map_scale + map_size)
        rotated_y = int(rotated_y / map_scale + map_size)

        if (rotated_x >= 0 and rotated_x < canvas_size and rotated_y >= 0
                and rotated_y < canvas_size):
            color = (255, 0, 0)
            object_id = 3
            show = True
            if simple_map[rotated_x, rotated_y] == 0:
                show = (only_visible_beacons is not True)
            else:
                visble_beacons_world.append((b[0], b[1]))

            if show:
                simple_map[rotated_x, rotated_y] = object_id
                cv2.circle(vis_map, (rotated_y, rotated_x),
                           2,
                           color,
                           thickness=-1)

    # Pick new goal from unexplored visible beacons if required
    if pick_new_goal:
        unexplored_beacons = []
        for b in visble_beacons_world:
            if b not in explored_goals:
                unexplored_beacons.append(b)

        if len(unexplored_beacons) > 0:
            beacon_idx = random.randint(0, len(unexplored_beacons) - 1)
            """
            max_dist = 0
            for b in range(len(unexplored_beacons)):
                xdiff = unexplored_beacons[b][0] - player_x
                ydiff = unexplored_beacons[b][1] - player_y
                d = abs(xdiff) + abs(ydiff)
                if d > max_dist:
                    beacon_idx = b
                    max_dist = d
            """
            curr_goal = unexplored_beacons[beacon_idx]
            explored_goals[curr_goal] = True
        else:
            curr_goal = None
        """
        elif len(visble_beacons_world) > 0:
            beacon_idx = random.randint(0, len(visble_beacons_world)-1)
            curr_goal = visble_beacons_world[beacon_idx]
            explored_goals[curr_goal] = True
        """

    # Draw current goal location on map
    if curr_goal is not None:
        object_relative_x = -curr_goal[0] + player_x
        object_relative_y = -curr_goal[1] + player_y

        rotated_x = math.cos(
            math.radians(-player_angle)) * object_relative_x - math.sin(
                math.radians(-player_angle)) * object_relative_y  # NOQA
        rotated_y = math.sin(
            math.radians(-player_angle)) * object_relative_x + math.cos(
                math.radians(-player_angle)) * object_relative_y  # NOQA

        rotated_x = int(rotated_x / map_scale + map_size)
        rotated_y = int(rotated_y / map_scale + map_size)

        if (rotated_x >= 0 and rotated_x < canvas_size and rotated_y >= 0
                and rotated_y < canvas_size):
            color = (255, 255, 0)
            object_id = 4
            if simple_map[rotated_x, rotated_y] > 0:
                simple_map[rotated_x, rotated_y] = object_id
                cv2.circle(vis_map, (rotated_y, rotated_x),
                           2,
                           color,
                           thickness=-1)

    return vis_map, simple_map, curr_goal
Example #33
0
import numpy as np
import cv2

img = np.zeros((512, 512, 3), np.uint8)
img = img[:] + 255

x1, y1 = 100, 100
x2, y2 = 400, 400
pt1 = (120, 50)
pt2 = (300, 500)
green = (0, 255, 0)
blue = (255, 0, 0)
red = (0, 0, 255)

cv2.rectangle(img, (x1, y1), (x2, y2), red, 2)
cv2.line(img, pt1, pt2, blue, 2)

imgRect = (x1, y1, x2 - x1, y2 - y1)
ret, p1, p2 = cv2.clipLine(imgRect, pt1, pt2)

if ret is True:
    cv2.circle(img, p1, 10, green, 2)
    cv2.circle(img, p2, 10, green, 2)

cv2.imshow('img', img)

cv2.waitKey()

cv2.destroyAllWindows()
Example #34
0
File: LSWMS.py Project: johnden/rio
 def grow(self, dpOrig, ptDst, dir):
     # auxiliar
     ptEnd1 = [0,0]; ptEnd2 = [0,0]
     dpEnd  = [[0,0],0,0]
     dpRef  = [[0,0], 0, 0]  # dpEnd  = DIRPOINT([[0,0],0,0]); dpRef  = DIRPOINT( [[0,0], 0, 0])
     
     # Init output
     ptDst = dpOrig[0]
     
     # Starting gradient vector and director vector
     gX = 0.0; gY = 0.0
     if dir == 1:
         gX = dpOrig[1]
         gY = dpOrig[2]
     elif dir == 2:
         gX = -dpOrig[1]
         gY = -dpOrig[2]
     else:
         return [Enum['RETERROR'],dpOrig, ptDst, dir]
         
     # Compute currentAngle in 1°4°
     error1 = 0.0
     auxAngle  = 0.0
     minAngle  = 0.0
     maxAngle  = 0.0
     diffAngle = 0.0
     growAngle = math.atan2(gY,gX)
     
     # Starting point and angle - Bresenham
     pt1 = dpOrig[0]
     pt2 = [pt1[0] + int(1000*(-gY)),pt1[1] + int(1000*(gX))]
     cv2.clipLine(self.imPadSize, pt1, pt2)                   # !be careful
     
     # Loop - Bresenham
     k1 = 0
     x1 = pt1[0], x2 = pt2[0]
     y1 = pt1[1], y2 = pt2[1]
     dx = ABS(x2-x1)
     dy = ABS(y2-y1)
     sx = 0; sy = 0; err = 0; e2 = 0
     
     if self.verbose:
         print ("From (%d,%d) to (%d,%d)..." %  (x1, y1, x2, y2))
         # fflush(stdout)
     if x1 < x2:
         sx = 1
     else:
         sx = -1
     if y1 < y2:
         sy = 1
     else:
         sy = -1
     err = dx - dy
     
     maxNumZeroPixels = 2 * self.R; countZeroPixels = 0
     while True:
         '''
         Current value is (x1,y1)	
         if(verbose) { printf("\n\tBresenham(%d,%d)", x1, y1); fflush(stdout); }
         -------------------------------
         Do...
         Check if angle has been computed
         '''
         if self.A[y1,x1] != NOTAVALIDANGLE:
             auxAngle = self.A[y1,x1]
         else:
             auxAngle = math.atan2(1.0*self.Gy[y1,x1], 1.0*self.Gx[y1,x1])
             self.A[y1,x1] = auxAngle
         # Check early-termination of Bresenham
         if self.G[y1,x1] == 0:
             countZeroPixels = countZeroPixels + 1
             if countZeroPixels >= maxNumZeroPixels:
                 break
         
         # Check angular limits
         if growAngle - self.margin < -PI2:
             # e.g. currentAngle = -80°, margin = 20°
             minAngle = growAngle - self.margin + 1.0*CVPI #  e.g. -80 -20 +180 = 80
             maxAngle = growAngle + self.margin             #  e.g. -80 +20
             
             if auxAngle < 0:
                 if auxAngle > maxAngle:
                     break
                 diffAngle = ABS(growAngle - auxAngle)
             else:
                 if auxAngle < minAngle:
                     break
                 diffAngle = ABS(growAngle - (auxAngle - 1.0*CVPI))
         elif growAngle + self.margin > PI2:
             # e.g. currentAngle = 80º, margin = 20º
             minAngle = growAngle - self.margin             # e.g. 80 - 20 = 60
             maxAngle = growAngle + self.margin - 1.0*CVPI # e.g. 80 +20 -180 = -80
             
             if auxAngle > 0:
                 if auxAngle < minAngle:
                     break
                 diffAngle = ABS(growAngle - auxAngle)
             else:
                 if auxAngle > maxAngle:
                     break
                 diffAngle = ABS(growAngle - (auxAngle + 1.0*CVPI))
         else:
             minAngle = growAngle - self.margin
             maxAngle = growAngle + self.margin
             if auxAngle < minAngle or auxAngle > maxAngle:
                 break
             diffAngle = ABS(growAngle - auxAngle)        
         error1 = error1 + diffAngle
         ptEnd1 = [x1, y1]
         k1 = k1 + 1
         
         # Check end
         if x1 == x2 and y1 == y2:
             break
         # Update position for next iteration
         e2 = 2*err
         if e2 > -dy:
             err = err - dy
             x1  = x1 + sx
         if e2 < dx:
             err = err + dx
             y1  = y1  + sy
         
     # "k1": how many pints have been visited
     # "ptEnd": last valid point
     if k1 == 0:
         # this means that even the closest point has not been accepted	
         ptEnd1 = dpOrig[0]
         error1 = 1.0*CVPI
     else:
         error1 /= k1
     if self.verbose:
         print (", Arrived to (%d,%d), error=%.2f" % (ptEnd1[0],ptEnd1[1],error1))
         # fflush(stdout)
     # Set ptDst
     ptDst = copy.copy(ptEnd1)
     
     # Apply Mean-Shift to refine the end point
     if self.verbose:
         print (", Dist = (%d,%d)\n" % (ABS(ptEnd1[0] - dpOrig[0][0]), ABS(ptEnd1[1] - dpOrig[0][1])))
     if ABS(ptEnd1[0] - dpOrig[0][0]) > self.R or ABS(ptEnd1[1] - dpOrig[0][1]) > self.R:
         # ONLY IF THERE HAS BEEN (SIGNIFICANT) MOTION FROM PREVIOUS MEAN-SHIFT MAXIMA
         counter = 0
         while True:
             if self.verbose:
                 print ("\tMean-Shift(Ext): from (%d,%d,%.2f,%.2f) to..." % (ptEnd1[0], ptEnd1[1], gX, gY))
                 # fflush(stdout)
             counter = counter + 1
             # Mean-Shift on the initial extremum
             dpEnd[0] = copy.copy(ptEnd1) 
             dpEnd[1] = copy.copy(gX) 
             dpEnd[2] = copy.copy(gY)
             
             dpRef[0] = copy.copy(ptEnd1)
             dpRef[1] = copy.copy(gX)
             dpRef[2] = copy.copy(gY)
             retMSExt, dpEnd, dpRef,self.M = self.weightedMeanShift(dpEnd, dpRef,self.M)   # !< function of weightedMeanShift
             
             if self.verbose:
                 print ("(%d,%d,%.2f,%.2f)\n" % (dpRef[0][0],dpRef[0][1], dpRef[1], dpRef[2]))
             if retMSExt == Enum['RETERROR']:
                 ptDst = copy.copy(ptEnd1)
                 return [Enum['RETOK'],dpOrig, ptDst, dir]
             
             # Check motion caused by Mean-Shift
             if (dpRef[0][0] == dpEnd[0][0]) and (dpRef[0][1] == dpEnd[0][1]):
                 ptDst = copy.copy(dpRef[0])
                 return [Enum['RETOK'],dpOrig, ptDst, dir]
             
             # Check displacement from dpOrig
             gX = float(dpRef[0][1] - dpOrig[0][1])
             gY = float(dpOrig[0][0] - dpRef[0][0])
             if gX == 0 and gY == 0:
                 ptDst = copy.copy(dpRef[0])
                 return [Enum['RETOK'],dpOrig, ptDst, dir]
             norm = 1.0*math.sqrt(gX*gX + gY*gY)
             gX /= norm
             gY /= norm
             
             # New Bresenham procedure
             if gX < 0:
                 # Move to 1°4°
                 gX = -gX
                 gY = -gY
             growAngle = math.atan2(gY,gX)
             
             k2 = 0; error2 = 0.0
             
             pt2[0] = pt1[0] + int(1000*(-gY))
             pt2[1] = pt1[1] + int(1000*gX)
             
             x1 = copy.copy(pt1[0]); x2 = copy.copy(pt2[0])
             y1 = copy.copy(pt1[1]); y2 = copy.copy(pt2[1])
             dx = ABS(x2-x1)
             dy = ABS(y2-y1)
             
             if x1 < x2:
                 sx = 1
             else:
                 sx = -1
             if y1 < y2:
                 sy = 1
             else:
                 sy = -1
             err = dx - dy
             
             if self.verbose:
                 print ("\tRefined GROW: From (%d,%d) to (%d,%d)..." % x1, y1, x2, y2)
                 # fflush(stdout)
             while True:
                 if self.A[y1,x1] != NOTAVALIDANGLE:
                     auxAngle = self.A[y1,x1]
                 else:
                     auxAngle = math.atan2(1.0*self.Gy[y1,x1],1.0*self.Gx[y1,x1])
                     self.A[y1,x1] = auxAngle
                 
                 # Check early-termination of Bresenham
                 if self.G[y1,x1] == 0:
                     countZeroPixels = countZeroPixels + 1
                     if countZeroPixels >= maxNumZeroPixels:
                         break  # No gradient point
                         
                 # Check angular limits
                 if growAngle - self.margin < -PI2:
                     minAngle = growAngle - self.margin + 1.0*CVPI
                     maxAngle = growAngle + self.margin
                     
                     if auxAngle < 0:
                         if auxAngle > maxAngle:
                             break
                         diffAngle = ABS(growAngle - auxAngle)
                     else:
                         if auxAngle < minAngle:
                             break
                         diffAngle = ABS(growAngle - (auxAngle - 1.0*CVPI))
                 
                 elif growAngle + self.margin > PI2:
                     minAngle = growAngle - self.margin
                     maxAngle = growAngle + self.margin - 1.0*CVPI
                     
                     if auxAngle > 0:
                         if auxAngle < minAngle:
                             break
                         diffAngle = ABS(growAngle - auxAngle)
                     else:
                         if auxAngle > maxAngle:
                             break
                         diffAngle = ABS(growAngle - (auxAngle + 1.0*CVPI))
                 
                 else:
                    minAngle = growAngle - self.margin
                    maxAngle = growAngle + self.margin
                    if auxAngle < minAngle or auxAngle > maxAngle:
                        break
                    diffAngle = ABS(growAngle - auxAngle)
                
                 error2 = error2 + diffAngle
                 ptEnd2 = [x1,y1]
                 k2 = k2 + 1
                 
                 # Check end
                 if x1 == x2 and y1 == y2:
                     break
                 # Update position for next iteration
                 e2 = 2*err
                 if e2 > -dy:
                     err = err - dy
                     x1  = x1  + sx
                 if e2 < dx:
                     err = err + dx
                     y1  = y1  +  sy
             # Bresenham while
             
             # "k2": how many points have been visited
             # "ptEnd2": last valid point
             if k2 == 0:
                 # this means that even the closest point has not been accepted	
                 ptEnd2 = copy.copy(dpOrig[0])
                 error2 = 1.0*CVPI
             else:
                 error2 = error2 / k2
                 # fflush(stdout) # Don't really know why, but this is necessary to avoid dead loops...
             
             if self.verbose:
                 print (", Arrived to (%d,%d), error=%.2f" % (ptEnd2[0], ptEnd2[1], error2))
                 # fflush(stdout)
             if self.verbose:
                 print (", Dist = (%d,%d)\n" % (ABS(ptEnd2[0] - dpOrig[0][0]), ABS(ptEnd1[1] - dpOrig[0][1])))
                     
             # Compare obtained samples
             if error1 <= error2:
                 ptDst = copy.copy(ptEnd1)
                 return error1
             else:
                 ptEnd1 = copy.copy(ptEnd2)
                 k1     = copy.copy(k2)
                 error1 = copy.copy(error2)
             
         # Mean-Shift while
     return [error1,dpOrig, ptDst, dir]
Example #35
0
 def update_event(self, input_called=-1):
     result = cv2.clipLine(self.input(0), self.input(1), self.input(2))
     self.set_output_val(0, result[0])
Example #36
0
def visualize_free_space(state,
                         height=960,
                         width=1280,
                         map_size=256,
                         map_scale=5,
                         fov=90.0):

    depth_buffer = state.depth_buffer
    labels_buffer = state.labels_buffer
    screen_buffer = state.screen_buffer

    player_x = state.game_variables[5]
    player_y = state.game_variables[6]
    player_z = state.game_variables[7]

    player_angle = state.game_variables[8]
    player_pitch = state.game_variables[9]
    player_roll = state.game_variables[10]

    print('player:', player_x, player_y, player_z)
    print('player:', player_angle, player_pitch, player_roll)

    canvas_size = 2 * map_size + 1
    simple_map = np.zeros((canvas_size, canvas_size, 3), dtype=np.uint8)

    r = canvas_size
    offset = 225

    y1 = int(r * math.cos(math.radians(offset + player_angle)))
    x1 = int(r * math.sin(math.radians(offset + player_angle)))

    y2 = int(r * math.cos(math.radians(offset + player_angle - fov)))
    x2 = int(r * math.sin(math.radians(offset + player_angle - fov)))

    _, p1, p2 = cv2.clipLine((0, 0, canvas_size, canvas_size),
                             (map_size, map_size),
                             (map_size + x1, map_size + y1))
    _, p3, p4 = cv2.clipLine((0, 0, canvas_size, canvas_size),
                             (map_size, map_size),
                             (map_size + x2, map_size + y2))

    #cv2.line(simple_map, p1, p2, (255, 255, 255), thickness=1)
    #cv2.line(simple_map, p3, p4, (255, 255, 255), thickness=1)

    game_unit = 110.0 / 14
    ray_cast = (depth_buffer[height / 2] * game_unit) / float(map_scale)

    ray_points = [(map_size, map_size)]
    for i in range(canvas_size):
        d = ray_cast[int(float(width) / canvas_size * i - 1)]
        theta = (float(i) / canvas_size * fov)
        #ray_y = int(d * math.sin(math.radians(offset + player_angle - theta))) + map_size
        #ray_x = int(d * math.cos(math.radians(offset + player_angle - theta))) + map_size
        ray_y = int(d * math.sin(math.radians(offset - theta))) + map_size
        ray_x = int(d * math.cos(math.radians(offset - theta))) + map_size

        _, _, p = cv2.clipLine((0, 0, canvas_size, canvas_size),
                               (map_size, map_size), (ray_y, ray_x))
        ray_points.append(p)

        #if (ray_x >= 0 and ray_x < canvas_size and
        #    ray_y >= 0 and ray_y < canvas_size):
        #    ray_points.append((ray_y, ray_x))
        #    simple_map[(ray_x, ray_y)] = 255

    cv2.fillPoly(simple_map, np.array([ray_points], dtype=np.int32),
                 (255, 255, 255))

    for l in state.labels:
        object_relative_x = -l.object_position_x + player_x
        object_relative_y = -l.object_position_y + player_y
        object_relative_z = -l.object_position_z + player_z

        print(l.object_name, (object_relative_x), (object_relative_y),
              (object_relative_z))

        scaled_x = object_relative_x
        scaled_y = object_relative_y

        rotated_x = math.cos(
            math.radians(-player_angle)) * scaled_x - math.sin(
                math.radians(-player_angle)) * scaled_y
        rotated_y = math.sin(
            math.radians(-player_angle)) * scaled_x + math.cos(
                math.radians(-player_angle)) * scaled_y

        rotated_x = int(rotated_x / map_scale + map_size)
        rotated_y = int(rotated_y / map_scale + map_size)

        if (rotated_x >= 0 and rotated_x < canvas_size and rotated_y >= 0
                and rotated_y < canvas_size):
            simple_map[(rotated_x, rotated_y)] = (0, 0, 255)

    cv2.imshow('ViZDoom Simplemap Buffer', simple_map)
Example #37
0
# 0302.py
import cv2
import numpy as np

img = np.zeros(shape=(512, 512, 3), dtype=np.uint8) + 255

x1, x2 = 100, 400
y1, y2 = 100, 400
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255))

pt1 = 120, 50
pt2 = 300, 500
cv2.line(img, pt1, pt2, (255, 0, 0), 2)

imgRect = (x1, y1, x2 - x1, y2 - y1)
retval, rpt1, rpt2 = cv2.clipLine(imgRect, pt1, pt2)
if retval:
    cv2.circle(img, rpt1, radius=5, color=(0, 255, 0), thickness=-1)
    cv2.circle(img, rpt2, radius=5, color=(0, 255, 0), thickness=-1)

cv2.imshow('img', img)
cv2.waitKey()
cv2.destroyAllWindows()
Example #38
0
    def draw_boxes_on_image_py(self,
                               rgb,
                               corners_pix,
                               centers_pix,
                               scores,
                               tids,
                               boxes=None,
                               thickness=1):
        # all inputs are numpy tensors
        # rgb is H x W x 3
        # corners_pix is N x 8 x 2, in xy order
        # centers_pix is N x 1 x 2, in xy order
        # scores is N
        # tids is N
        # boxes is N x 9 < this is only here to print some rotation info

        rgb = np.transpose(rgb, [1, 2, 0])  # put channels last
        rgb = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)

        H, W, C = rgb.shape
        assert (C == 3)
        N, D, E = corners_pix.shape
        assert (D == 8)
        assert (E == 2)

        if boxes is not None:
            rx = boxes[:, 6]
            ry = boxes[:, 7]
            rz = boxes[:, 8]
        else:
            rx = 0
            ry = 0
            rz = 0

        color_map = matplotlib.cm.get_cmap('tab20')
        color_map = color_map.colors

        # draw
        for ind, corners in enumerate(corners_pix):
            # corners is 8 x 2
            if True:
                # print 'score = %.2f' % scores[ind]
                color_id = 1 % 20
                color = color_map[color_id]
                color = np.array(color) * 255.0
                # color = (0,191,255)
                # color = (255,191,0)
                # print 'tid = %d; score = %.3f' % (tids[ind], scores[ind])

                cv2.circle(rgb,
                           (centers_pix[ind, 0, 0], centers_pix[ind, 0, 1]), 2,
                           color, -1)

                cv2.putText(
                    rgb,
                    '%d (%.2f)' % (tids[ind], scores[ind]),
                    (np.min(corners[:, 0]), np.min(corners[:, 1])),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.5,  # font size
                    color,
                    1)  # font weight

                for c in corners:

                    # rgb[pt1[0], pt1[1], :] = 255
                    # rgb[pt2[0], pt2[1], :] = 255
                    # rgb[np.clip(int(c[0]), 0, W), int(c[1]), :] = 255

                    c0 = np.clip(int(c[0]), 0, W - 1)
                    c1 = np.clip(int(c[1]), 0, H - 1)
                    rgb[c1, c0, :] = 255

                # we want to distinguish between in-plane edges and out-of-plane ones
                # so let's recall how the corners are ordered:

                # (new clockwise ordering)
                xs = np.array([
                    1 / 2., 1 / 2., -1 / 2., -1 / 2., 1 / 2., 1 / 2., -1 / 2.,
                    -1 / 2.
                ])
                ys = np.array([
                    1 / 2., 1 / 2., 1 / 2., 1 / 2., -1 / 2., -1 / 2., -1 / 2.,
                    -1 / 2.
                ])
                zs = np.array([
                    1 / 2., -1 / 2., -1 / 2., 1 / 2., 1 / 2., -1 / 2., -1 / 2.,
                    1 / 2.
                ])

                for ii in list(range(0, 2)):
                    cv2.circle(
                        rgb,
                        (corners_pix[ind, ii, 0], corners_pix[ind, ii, 1]), 3,
                        color, -1)
                for ii in list(range(2, 4)):
                    cv2.circle(
                        rgb,
                        (corners_pix[ind, ii, 0], corners_pix[ind, ii, 1]), 2,
                        color, -1)

                xs = np.reshape(xs, [8, 1])
                ys = np.reshape(ys, [8, 1])
                zs = np.reshape(zs, [8, 1])
                offsets = np.concatenate([xs, ys, zs], axis=1)

                corner_inds = list(range(8))
                combos = list(combinations(corner_inds, 2))

                for combo in combos:
                    pt1 = offsets[combo[0]]
                    pt2 = offsets[combo[1]]
                    # draw this if it is an in-plane edge
                    eqs = pt1 == pt2
                    if np.sum(eqs) == 2:
                        i, j = combo
                        pt1 = (corners[i, 0], corners[i, 1])
                        pt2 = (corners[j, 0], corners[j, 1])
                        retval, pt1, pt2 = cv2.clipLine((0, 0, W, H), pt1, pt2)
                        if retval:
                            cv2.line(rgb, pt1, pt2, color, thickness,
                                     cv2.LINE_AA)

                        # rgb[pt1[0], pt1[1], :] = 255
                        # rgb[pt2[0], pt2[1], :] = 255
        rgb = cv2.cvtColor(rgb.astype(np.uint8), cv2.COLOR_BGR2RGB)
        # utils_basic.print_stats_py('rgb_uint8', rgb)
        # imageio.imwrite('boxes_rgb.png', rgb)
        return rgb
Example #39
0
import matplotlib.pyplot as plt
image = np.zeros((500, 400, 3), dtype="uint8")
image[:] = constant.LIGHT_GRAY
cv.imshow("image", image)

#show_in_matplot
image_matplotlib = image[:, :, ::-1]
# cv.line(image, (50, 60), (300,60),constant.GREEN , 8)
# cv.rectangle(image, (10, 50), (60, 300), constant.GREEN,4)
# cv.rectangle(image, (80, 50), (130, 300), constant.GREEN, -1)
# cv.circle(image, (50, 50), 20, constant.BLUE, 3)
# cv.circle(image, (100, 100), 30, constant.RED, -1)

cv.line(image, (0, 0), (300, 300), constant.BLUE, 3)
cv.rectangle(image, (0, 0), (100, 100), constant.RED, 3)
ret, p1, p2 = cv.clipLine((0, 0, 100, 100), (0, 0), (300, 400))
if ret:
    cv.line(image, p1, p2, constant.YELLOW, 3)
    plt.subplot(111)
cv.arrowedLine(image, (200, 50), (30, 50), constant.RED, 3, 8, 0, 0.1)
cv.arrowedLine(image, (50, 120), (200, 120), constant.YELLOW, 3, cv.LINE_AA, 0,
               0.3)

# These points define a triangle
pts = np.array([[250, 5], [220, 80], [280, 80]], np.int32)
# Reshape to shape (number_vertex, 1, 2)
pts = pts.reshape((-1, 1, 2))
# Print the shapes: this line is not necessary, only for visualization
print("shape of pts {}".format(pts.shape))
# Draw this poligon with True option
cv.polylines(image, [pts], True, constant.CYAN, 3)