Example #1
0
def TrackFile(anim):
    tracks = cvb.Tracks()
    capture = cv.CreateFileCapture(anim)
    cv.GrabFrame(capture)
    img = cv.RetrieveFrame(capture)
    frame = cv.CreateImage(cv.GetSize(img), img.depth, img.nChannels)
    cnt = 1
    while cv.GrabFrame(capture):
        # Capture Frames
        img = cv.RetrieveFrame(capture)
        cv.ResetImageROI(frame)
        cv.ConvertScale(img, frame, 1, 0)
        cv.Threshold(frame, frame, 100, 200, cv.CV_THRESH_BINARY)
        #rct=cv.Rectangle(0, 25, 383, 287)
        cv.SetImageROI(frame, (0, 25, 383, 287))
        chB = cv.CreateImage(cv.GetSize(frame), 8, 1)
        cv.Split(frame, chB, None, None, None)
        labelImg = cv.CreateImage(cv.GetSize(frame), cvb.IPL_DEPTH_LABEL, 1)

        # Get Blobs and try Update Tracks
        blobs = cvb.Blobs()
        result = cvb.Label(chB, labelImg, blobs)
        cvb.FilterByArea(blobs, 500, 1000)

        # Trys are implemented here just to ensure crashes don't happen when blobs are not present
        try:
            print type(blobs.items()[0][1])
        except:
            pass
        cvb.UpdateTracks(blobs, tracks, 5., 10, 0)
        try:
            print type(blobs.items()[0][1])
        except:
            pass
        try:
            print type(tracks.items()[0][1])
        except:
            pass
        imgOut = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 3)
        cv.Zero(imgOut)
        cvb.RenderBlobs(
            labelImg, blobs, frame, imgOut, cvb.CV_BLOB_RENDER_COLOR
            | cvb.CV_BLOB_RENDER_CENTROID | cvb.CV_BLOB_RENDER_BOUNDING_BOX)

        # Save images to see what's blobs are getting out.
        cnt = cnt + 1
        print cnt  #
        cv.SaveImage('blobs' + str(cnt) + '.png', imgOut)

    return tracks, blobs
Example #2
0
def printBlobs(img, min_color, max_color):
    blobs = cvblob.Blobs()  #Starts the blob class
    size = cv.GetSize(img)  #gets the size of the img

    hsv = cv.CreateImage(
        size, cv.IPL_DEPTH_8U,
        3)  #creates a new image for when the colored image is converted to hsv
    thresh = cv.CreateImage(
        size, cv.IPL_DEPTH_8U,
        1)  #creates a new image that is 1 channeled for the thresholding
    labelImg = cv.CreateImage(
        size, cvblob.IPL_DEPTH_LABEL,
        1)  #creates a image for later use for showing blobs

    cv.CvtColor(img, hsv,
                cv.CV_BGR2HSV)  #converts the color image to an hsv image
    cv.InRangeS(
        hsv, min_color, max_color, thresh
    )  #finds colors between a min range and a max range with a source img and a destination image

    #these are for corrections to thresholding to remove as many false positives
    cv.Smooth(thresh, thresh, cv.CV_BLUR)  #smooths out the thresholded image
    cv.Dilate(thresh, thresh)  #Dilates the thresholded image
    cv.Erode(thresh, thresh)  #Erodes the thresholded image

    result = cvblob.Label(
        thresh, labelImg, blobs
    )  #Don't know what this does exactly but it is used later to print the total number of pixels found

    numblobs = len(
        blobs.keys()
    )  #Number of blobs found. blobs is a dictionary with the keys as the number of the blob found and the value as the pointer to the location of the blob

    avgSize = int(result /
                  numblobs)  #Average size of the blobs casted as an int

    print "average size: " + str(avgSize)
    arr = []  #empty array to keep track fo what blobs to remove
    for x in blobs:
        if (
                blobs[x].area < avgSize
        ):  #if the size of the blob is less than half of the mean size, the blob is added to the array
            arr.append(x)
    for x in arr:
        del blobs[x]  # the blob is then removed from the dictionary of blobs
    for x in blobs:
        print str(blobs[x]) + "," + str(
            blobs[x].area)  #prints the blob number and the area of the blob
Example #3
0
hmin = 50
hrange = 50
min_green = cv.Scalar(hmin, 100, 100, 0)
max_green = cv.Scalar(hmin + hrange, 256, 256, 0)
#cv.Smooth(img, img, cv.CV_GAUSSIAN)
#cv.Smooth(img, img, cv.CV_GAUSSIAN)
cv.CvtColor(img, hsv, cv.CV_BGR2HSV)

cv.InRangeS(hsv, min_green, max_green, green)
#cv.InRangeS(img, cv.RGB(200,230,200), cv.RGB(250,256,250),green);
''' Smooth out the HSV_image and dilate/erode'''
cv.Smooth(green, green, cv.CV_BLUR)
cv.Dilate(green, green)
cv.Erode(green, green)

result = cvblob.Label(green, labelImg, blobs)
numblobs = len(blobs.keys())

if (numblobs > 0):
    # Average Size of Blobs
    avgsize = int(result / numblobs)
    print str(numblobs) + " blobs found covering " + str(result) + "px"
    filtered = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_8U, 1)
    cvblob.FilterLabels(labelImg, filtered, blobs)

    # Largest Blob size
    bigblob = cvblob.GreaterBlob(blobs)
    print "largest blob is " + str(bigblob) + " which is " + str(
        blobs[bigblob].area) + " px"

    bigblobs = copy.copy(blobs)
Example #4
0
blobs = cvblob.Blobs()
size = cv.GetSize(img)

hsv = cv.CreateImage(size, cv.IPL_DEPTH_8U, 3)
h = cv.CreateImage(size, 8, 1)
grey = cv.CreateImage(size, 8, 1)
yuv = cv.CreateImage(size, 8, 3)
red = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
labelImg = cv.CreateImage(size,cvblob.IPL_DEPTH_LABEL, 1)

hsv_min = cv.Scalar(0,10,10,0)
hsv_max = cv.Scalar(180,255,255,0)

cv.InRangeS(img, cv.RGB(200,0,0), cv.RGB(255,225,225),red);

result = cvblob.Label(red,labelImg,blobs)
numblobs = len(blobs.keys())

avgsize = int(result/numblobs)
print str(numblobs) + " Blobs found covering " + str(result) + "px"
filtered = cv.CreateImage(cv.GetSize(img),cv.IPL_DEPTH_8U,1)
cvblob.FilterLabels(labelImg,filtered,blobs)

bigblob = cvblob.GreaterBlob(blobs)
print "largest blob is " + str(bigblob) + " which is " + str(blobs[bigblob].area + "px"

bigblobs = copy.copy(blobs)
cvblob.FilterByLabel(bigblobs,bigblob)
print str(len(bigblobs.keys())) + " blobs with label " + str(bigblob)

centroid  = cvblob.Centroid(bigblobs[bigblob])
Example #5
0
def findBlobs(img, min_color, max_color, window, renderedwindow, location,
              area):
    blobs = cvblob.Blobs()  #initializes the blobs class
    size = cv.GetSize(img)  #gets size of image

    hsv = cv.CreateImage(size, cv.IPL_DEPTH_8U, 3)  #New HSV image for alter
    thresh = cv.CreateImage(size, cv.IPL_DEPTH_8U,
                            1)  #New Gray Image for later
    labelImg = cv.CreateImage(size, cvblob.IPL_DEPTH_LABEL,
                              1)  #New Blob image for later

    cv.CvtColor(img, hsv, cv.CV_BGR2HSV)  #converts image to hsv image
    cv.InRangeS(hsv, min_color, max_color, thresh)  #thresholds it

    #Corrections to remove false positives
    cv.Smooth(thresh, thresh, cv.CV_BLUR)
    cv.Dilate(thresh, thresh)
    cv.Erode(thresh, thresh)

    result = cvblob.Label(thresh, labelImg,
                          blobs)  #extracts blobs from a greyscale image

    numblobs = len(
        blobs.keys())  #number of blobs based off of length of blobs dictionary

    #if there are blobs found
    if (numblobs > 0):
        avgsize = int(result / numblobs)
        print str(numblobs) + " blobs found covering " + str(result) + "px"

        #Removes blobs that are smaller than a certain size based off of average size
        remv = []
        for x in blobs:
            if (blobs[x].area < avgsize / 3):
                remv.append(x)
        for x in remv:
            del blobs[x]

        numblobs = len(
            blobs.keys())  #gets the number of blobs again after removing some
        print str(numblobs) + " blobs remaining"

        filtered = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_8U, 1)
        cvblob.FilterLabels(
            labelImg, filtered, blobs
        )  #Creates a binary image with the blobs formed (imgIn, imgOut, blobs)

        #Centroid, area, and circle for all blobs
        for blob in blobs:
            location.append(cvblob.Centroid(blobs[blob]))
            area.append(blobs[blob].area)
            cv.Circle(img, (int(cvblob.Centroid(
                blobs[blob])[0]), int(cvblob.Centroid(blobs[blob])[1])),
                      int(math.sqrt(int(blobs[blob].area) / 3.14)) + 25,
                      cv.Scalar(0, 0, 0))

        imgOut = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_8U, 3)
        cv.Zero(imgOut)

        cvblob.RenderBlobs(
            labelImg, blobs, img, imgOut,
            cvblob.CV_BLOB_RENDER_COLOR | cvblob.CV_BLOB_RENDER_CENTROID
            | cvblob.CV_BLOB_RENDER_BOUNDING_BOX | cvblob.CV_BLOB_RENDER_ANGLE,
            1.0)  #Marks up the blobs image to put bounding boxes, etc on it

        cv.ShowImage("Window", img)  #shows the orininalimage
        cv.ShowImage("Rendered", imgOut)  #shows the blobs image

        return blobs  #returns the list of blobs

    else:
        print " ...Zero blobs found. \nRedifine color range for better results"  #if no blobs were found print an error message

        cv.ShowImage("Window", img)  #show the original image