Example #1
0
def handle_gradients(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, _ = get_input(data['input'])
    scope = str(data['scope'])
    target = int(data['target'])
    epochs = 1  # int(data['epochs'])
    epsilon = float(data['epsilon'])

    model.eval()

    fgsm = FGSM(model)
    noise, noised = fgsm.generate(x, target, epsilon, epochs)

    model_origin = create_model(data['model'], pretrained=True)
    model_origin.eval()
    gradients_hook_origin = GradientsHook(model_origin, stop_types=nn.Linear)
    output = model_origin(x.detach().requires_grad_(True))
    output[0, target].backward()

    input = noised.detach().requires_grad_(True)
    gradients_hook = GradientsHook(model, stop_types=nn.Linear)

    output = model(input)
    output[0, target].backward()

    topk = torch.topk(torch.softmax(
        output, dim=1).squeeze(0), 5, 0, True, True)
    topk = [{'index': f'{i}', 'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in zip(topk.indices.detach().numpy(), topk.values.detach().numpy())]

    gradients_hook_origin -= gradients_hook
    emit('topk', topk)
    emit('response_fgsm_gradients_diff', gradients_hook_origin.save(
        f'static/out/alexnet_{time.time()}', normalization_scope=scope, split_channels=True))
Example #2
0
def model_layers(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    layers = []
    for index, (name, layer) in enumerate(named_layers(model)):
        layers.append({'index': index, 'name': name, 'layer': str(layer)})

    emit('layers', layers)
Example #3
0
def handle_activations(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, _ = get_input(data['input'])
    scope = str(data['scope'])
    target = int(data['target'])
    epochs = 1  # int(data['epochs'])
    epsilon = float(data['epsilon'])

    model.eval()

    fgsm = FGSM(model)
    noise, noised = fgsm.generate(x, target, epsilon, epochs)

    activations_hook = ActivationsHook(model, stop_types=nn.Linear)
    activations_hook.activations.append({})
    activations_hook.activations[0]['input'] = noised.detach()

    output = torch.softmax(model(noised.detach()), dim=1).squeeze(0)
    predictions = [{'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in enumerate(output)]
    topk = torch.topk(output, 5, 0, True, True)
    topk = [{'index': f'{i}', 'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in zip(topk.indices.detach().numpy(), topk.values.detach().numpy())]

    emit('predictions', predictions)
    emit('topk', topk)
    emit('response_fgsm_activations', activations_hook.save(
        f'static/out/alexnet_{time.time()}', normalization_scope=scope, split_channels=True))
Example #4
0
def handle_act_max(data):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    manual_seed(0)

    model = create_model(data['model'], pretrained=True)
    model.to(device)
    model.eval()

    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    hook = LayerHook(model, int(data['layer']))

    x = torch.randint(150, 180, [1, 3, 224, 224]) / 255
    x = TF.normalize(x, mean, std).to(device).requires_grad_(True)

    optimizer = torch.optim.Adam([x], lr=float(data['lr']), weight_decay=1e-6)

    for i in range(int(data['epochs'])):
        optimizer.zero_grad()
        model(x)
        loss = -torch.mean(hook.activations[0, int(data['activation'])])
        loss.backward()
        optimizer.step()

        filename = f'static/out/act_max_{i}.png'
        torchvision.utils.save_image(denormalize(
            x.detach(), mean, std, clamp=bool(data['clamp'])), filename, normalize=True)

        emit('response_act_max', {
            'epoch': i,
            'loss': loss.item(),
            'output': filename
        })
Example #5
0
def handle_guided_saliency(data):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    model = create_model(data['model'], pretrained=True, cuda=False)
    model.to(device)
    model.eval()

    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    hook = LayerHook(model, int(data['layer']))

    image = Image.open(data['input'])
    x = TF.normalize(TF.resize(TF.to_tensor(image), [224, 224]), mean, std).to(
        device).unsqueeze(0).requires_grad_(True)

    optimizer = torch.optim.SGD([x], lr=float(data['lr']), weight_decay=1e-4)

    for i in range(int(data['epochs'])):
        optimizer.zero_grad()
        model(x)
        loss = -torch.mean(hook.activations[0, int(data['activation'])])
        loss.backward()
        optimizer.step()

        filename = f'static/out/deep_dream_{i}.png'
        torchvision.utils.save_image(denormalize(
            x.detach(), mean, std, clamp=bool(data['clamp'])), filename, normalize=True)

        emit('response_deep_dream', {
            'epoch': i,
            'loss': loss.item(),
            'output': filename
        })
Example #6
0
def handle_saliency(data):
    model = create_model(data['model'], pretrained=True)
    x, _ = get_input(data['input'])
    noise_level = float(int(data['noise_level']) / 100)
    target = int(data['target'])

    smoothgrad = SmoothGrad(model)
    attributions = smoothgrad.attribute(
        x, noise_level=noise_level, target=target, epochs=int(data['epochs']), abs=False).squeeze(0)

    emit('response_intergrated_grad', {
        'colorful': save_image(attributions, f'static/out/grad_colorful_{time.time()}.png'),
        'grayscale': save_image(torch.sum(torch.abs(attributions), dim=0), f'static/out/grad_grayscale_{time.time()}.png'),
        'grad_x_image': save_image(torch.sum(torch.abs(attributions * x.squeeze(0).detach()), dim=0), f'static/out/grad_x_image_{time.time()}.png')
    })
Example #7
0
def handle_saliency(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, original = get_input(data['input'])
    target = int(data['target'])

    saliency = RelativeGrad(model)
    attributions = saliency.attribute(x, target, abs=False).squeeze(0)

    emit('response_relative_grad', {
        f'Relative Gradient: [{attributions.min():>5.4f}, {attributions.max():>5.4f}]': save_image(attributions, f'static/out/grad_colorful_{time.time()}.png'),
        'Relative Gradient(abs)': save_image(torch.abs(attributions), f'static/out/grad_colorful_{time.time()}.png'),
        'Relative Gradient(abs) * Image': save_image(normalize(torch.abs(attributions)) * original, normalize=False, filename=f'static/out/grad_x_image_colorful_{time.time()}.png'),
        'Relative Grayscale Gradient': save_image(torch.sum(torch.abs(attributions), dim=0), f'static/out/grad_grayscale_{time.time()}.png'),
        'Relative Grayscale Gradinet * Image': save_image(torch.sum(torch.abs(attributions * x.squeeze(0).detach()), dim=0), filename=f'static/out/grad_x_image_{time.time()}.png')
    })
Example #8
0
def handle_class_max(data):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # manual_seed(0)

    model = create_model(data['model'], pretrained=True)
    model.to(device)
    model.eval()

    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    x = torch.randint(0, 255, [1, 3, 224, 224]) / 255
    x = TF.normalize(x, mean, std).to(device).requires_grad_(True)

    optimizer = torch.optim.SGD([x], lr=int(
        data['lr']), weight_decay=float(data['weight_decay']))

    for i in range(int(data['epochs'])):
        if bool(data['blur']) and i % int(data['blur_freq']) == 0:
            x.data = TF.gaussian_blur(x.data, [3, 3])

        optimizer.zero_grad()
        output = model(x)
        loss = -torch.softmax(output, dim=1)[0, int(data['target'])]
        loss.backward()

        if bool(data['clip_grad']):
            torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)

        optimizer.step()

        filename = f'static/out/class_max_{i}_{time.time()}.png'
        torchvision.utils.save_image(denormalize(
            x.detach(), mean, std, clamp=bool(data['clamp'])), filename, normalize=True)

        output = torch.softmax(output, dim=1).squeeze(0)
        # predictions = [{'class': cls_names[i].replace('_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i,v in enumerate(output)]
        topk = torch.topk(output, 5, 0, True, True)
        topk = [{'index': f'{i}', 'class': cls_names[i].replace('_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in zip(
            topk.indices.detach().cpu().numpy(), topk.values.detach().cpu().numpy())]

        emit('response_class_max', {
            'epoch': i,
            'loss': loss.item(),
            'output': filename,
            'topk': topk
        })
Example #9
0
def handle_saliency(data):
    logger.info(f'creating {data["model"]}')
    model = create_model(
        data['model'],
        pretrained=True,
        pth=data['pth'],
        cuda=False
    )
    
    logger.info('hooking')

    filters_hook = FiltersHook(model, size=int(data['size']), stride=int(data['stride']))
    
    logger.info('saving')

    emit('response_filters', filters_hook.save(f'static/out/{data["model"]}_{time.time()}'))
Example #10
0
def handle_fgsm(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, image = get_input(data['input'])
    target = int(data['target'])
    epochs = int(data['epochs'])
    epsilon = float(data['epsilon'])

    model.eval()
    output = model(x)
    original_max = output[0, target]
    output = torch.softmax(output, dim=1).squeeze(0)
    topk = torch.topk(output, 5, 0, True, True)
    topk = [{'index': f'{i}', 'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in zip(topk.indices.detach().numpy(), topk.values.detach().numpy())]

    emit('preds', topk)

    saliency = Saliency(model)
    attributions = saliency.attribute(x.detach(), target, abs=False).squeeze(0)
    emit('saliency', save_image(torch.abs(torch.sum(attributions, dim=0)),
         f'static/out/saliency_{time.time()}.png'))

    fgsm = FGSM(model)
    noise, noised = fgsm.generate(x, target, epsilon, epochs)
    emit("noise", save_image(noise.squeeze(0),
         f'static/out/noise_{time.time()}.png'))
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    emit("noised", save_image(denormalize(noised.squeeze(0),
         mean, std), f'static/out/noise_{time.time()}.png'))

    attributions = saliency.attribute(
        noised.detach(), target, abs=False).squeeze(0)
    emit('noised_saliency', save_image(torch.abs(
        torch.sum(attributions, dim=0)), f'static/out/saliency_{time.time()}.png'))

    output = model(noised)
    print(f'original: {original_max.item()}, fgsm: {output[0, target].item()}')
    output = torch.softmax(output, dim=1).squeeze(0)
    topk = torch.topk(output, 5, 0, True, True)
    topk = [{'index': f'{i}', 'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in zip(topk.indices.detach().numpy(), topk.values.detach().numpy())]

    emit('noised_preds', topk)
Example #11
0
def handle_saliency(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, image = get_input(data['input'])
    target = int(data['target'])

    gradcam = GradCAM(model, int(data['layer']))
    activations = gradcam.attribute(x, target).squeeze(0)

    saliency = GuidedSaliency(model)
    attributions = saliency.attribute(x, target, abs=False).squeeze(0)

    cam = normalize(activations)

    grad_cam = TF.to_pil_image(cam).resize(
        [x.shape[2], x.shape[3]], resample=Image.ANTIALIAS)
    grayscale_filename = f'static/out/heatmap_grayscale_{time.time()}.png'
    grad_cam.save(grayscale_filename)

    cmap = cm.get_cmap('hsv')
    heatmap = cmap(TF.to_tensor(grad_cam)[0].detach().numpy())
    colorful_filename = f'static/out/heatmap_{time.time()}.png'
    Image.fromarray((heatmap * 255).astype(np.uint8)).save(colorful_filename)

    heatmap[:, :, 3] = 0.4

    heatmap_on_image = Image.new('RGBA', (x.shape[2], x.shape[3]))
    heatmap_on_image = Image.alpha_composite(
        heatmap_on_image, TF.to_pil_image(image).convert('RGBA'))
    heatmap_on_image = Image.alpha_composite(
        heatmap_on_image, Image.fromarray((heatmap * 255).astype(np.uint8)))
    on_image_filename = f'static/out/heatmap_on_image_{time.time()}.png'
    heatmap_on_image.save(on_image_filename)

    # Vanilla gradients
    emit('response_gradcam', {
        'grayscale': grayscale_filename,
        'colorful': colorful_filename,
        'on_image': on_image_filename,
        'guided_saliecy': save_image(attributions, f'static/out/guided_saliency_{time.time()}.png'),
        'guided_grad_cam': save_image(TF.to_tensor(grad_cam) * attributions, f'static/out/guided_gradcam_{time.time()}.png')
    })
Example #12
0
def handle_accumulatedgrad(data):
    model = create_model(data['model'], pretrained=True)
    x, original = get_input(data['input'])
    epochs = int(data['epochs'])
    target = int(data['target'])

    ag = AccumulatedGrad(model)
    attributions, input = ag.attribute(x, epochs, target, abs=False)
    attributions = attributions.squeeze(0)

    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    x2, original2 = get_input(data['input'])
    emit('response_accumulatedgrad', {
        'Input - Grad': save_image(denormalize(input.squeeze(0), mean, std), f'static/out/input_{time.time()}.png'),
        'Accumulated Saliency': save_image(attributions, f'static/out/grad_colorful_{time.time()}.png'),
        'Accumulated Saliency(Abs)': save_image(torch.abs(attributions), f'static/out/grad_colorful_{time.time()}.png'),
        'Accumulated Saliency(Abs) * Image': save_image(normalize(torch.abs(attributions)) * original, normalize=False, filename=f'static/out/grad_colorful_{time.time()}.png'),
        'Accumulated Grayscale Saliency': save_image(torch.sum(torch.abs(attributions), dim=0), f'static/out/grad_grayscale_{time.time()}.png'),
        'Accumulated Grayscale Saliency * Image': save_image(torch.sum(torch.abs(attributions * x2.squeeze(0).detach()), dim=0), f'static/out/grad_x_image_{time.time()}.png')
    })
Example #13
0
def handle_gradients(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, _ = get_input(data['input'])
    scope = str(data['scope'])
    target = int(data['target'])
    
    model.eval()

    x.requires_grad_(True)
    gradients_hook = GradientsHook(model, stop_types=nn.Linear)

    output = model(x)
    output[0, target].backward()

    topk = torch.topk(torch.softmax(
        output, dim=1).squeeze(0), 5, 0, True, True)
    topk = [{'index': f'{i}', 'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in zip(topk.indices.detach().numpy(), topk.values.detach().numpy())]

    emit('topk', topk)
    emit('response_gradients', gradients_hook.save(
        f'static/out/alexnet_{time.time()}', normalization_scope=scope, split_channels=True))
Example #14
0
def handle_saliency(data):
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, original = get_input(data['input'])
    target = int(data['target'])

    guided_saliency = GuidedSaliency(model)
    guided_attributions = guided_saliency.attribute(
        x, target, abs=False).squeeze(0)

    # x2, _ = get_input(data['input'])
    # model = get_model(data['model'])
    # saliency = Saliency(model)
    # attributions = saliency.attribute(x2, target, abs=False).squeeze(0)
    # print(float(attributions.min()), float(attributions.max()))
    # guided_attributions = torch.clamp(guided_attributions, min=float(attributions.min()), max=float(attributions.max()))

    emit('response_guided_saliency', {
        f'Guided Saliency: [{guided_attributions.min():>5.4f}, {guided_attributions.max():>5.4f}]': save_image(guided_attributions, f'static/out/grad_colorful_{time.time()}.png'),
        # 'Guided Saliency(Abs)' : save_image(torch.abs(guided_attributions), f'static/out/grad_colorful_{time.time()}.png'),
        # 'Guided Saliency(Abs) * Image' : save_image(normalize(torch.abs(guided_attributions)) * original, normalize=False, filename=f'static/out/grad_colorful_{time.time()}.png'),
        'Guided Grayscale Saliency': save_image(torch.sum(torch.abs(guided_attributions), dim=0), f'static/out/grad_grayscale_{time.time()}.png'),
        'Guided Grayscale Saliency * Image': save_image(torch.sum(torch.abs(guided_attributions * x.squeeze(0).detach()), dim=0), f'static/out/grad_x_image_{time.time()}.png')
    })
Example #15
0
def handle_activations(data):
    model_name = data['model']
    model = create_model(data['model'], pretrained=True, cuda=False)
    x, _ = get_input(data['input'])
    scope = str(data['scope'])
    layers = int(data['layers'])

    model.eval()

    activations_hook = ActivationsHook(model, stop_types=nn.Linear, hook_layers=layers)
    activations_hook.activations.append({})
    activations_hook.activations[0]['input'] = x

    output = torch.softmax(model(x), dim=1).squeeze(0)
    predictions = [{'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in enumerate(output)]
    topk = torch.topk(output, 5, 0, True, True)
    topk = [{'index': f'{i}', 'class': cls_names[i].replace(
        '_', ' '), 'confidence': f'{v * 100:>4.2f}'} for i, v in zip(topk.indices.detach().numpy(), topk.values.detach().numpy())]

    emit('predictions', predictions)
    emit('topk', topk)
    emit('response_activations', activations_hook.save(
        f'static/out/{model_name}_{time.time()}', normalization_scope=scope, split_channels=True))