Example #1
0
    def test_iou_0_dim_cuda(self):
        boxes1 = torch.rand(0, 5, dtype=torch.float32)
        boxes2 = torch.rand(10, 5, dtype=torch.float32)
        expected_ious = torch.zeros(0, 10, dtype=torch.float32)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))

        boxes1 = torch.rand(10, 5, dtype=torch.float32)
        boxes2 = torch.rand(0, 5, dtype=torch.float32)
        expected_ious = torch.zeros(10, 0, dtype=torch.float32)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Example #2
0
 def test_iou_precision(self):
     for device in ["cpu"] + ["cuda"] if torch.cuda.is_available() else []:
         boxes1 = torch.tensor([[565, 565, 10, 10.0, 0]], dtype=torch.float32, device=device)
         boxes2 = torch.tensor([[565, 565, 10, 8.3, 0]], dtype=torch.float32, device=device)
         iou = 8.3 / 10.0
         expected_ious = torch.tensor([[iou]], dtype=torch.float32)
         ious = pairwise_iou_rotated(boxes1, boxes2)
         self.assertTrue(torch.allclose(ious.cpu(), expected_ious))
Example #3
0
def pairwise_iou(boxes1: RotatedBoxes, boxes2: RotatedBoxes) -> None:
    """
    Given two lists of rotated boxes of size N and M,
    compute the IoU (intersection over union)
    between __all__ N x M pairs of boxes.
    The box order must be (x_center, y_center, width, height, angle).

    Args:
        boxes1, boxes2 (RotatedBoxes):
            two `RotatedBoxes`. Contains N & M rotated boxes, respectively.

    Returns:
        Tensor: IoU, sized [N,M].
    """

    return pairwise_iou_rotated(boxes1.tensor, boxes2.tensor)
Example #4
0
def softnms_rotated(boxes, scores, sigma, score_threshold, soft_mode="gaussian"):
    assert soft_mode in ["linear", "gaussian"]

    iou_matrix = pairwise_iou_rotated(boxes, boxes)

    undone_mask = scores >= score_threshold
    while undone_mask.sum() > 1:
        idx = scores[undone_mask].argmax()
        idx = undone_mask.nonzero(as_tuple=False)[idx].item()
        undone_mask[idx] = False

        ious = iou_matrix[idx, undone_mask]
        scales = scale_by_iou(ious, sigma, soft_mode)

        scores[undone_mask] *= scales
        undone_mask[scores < score_threshold] = False
    return scores
Example #5
0
 def test_iou_extreme(self):
     # Cause floating point issues in cuda kernels (#1266)
     # See: https://github.com/facebookresearch/detectron2/issues/1266
     for device in ["cpu"] + ["cuda"] if torch.cuda.is_available() else []:
         boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device)
         boxes2 = torch.tensor(
             [
                 [
                     -1.117407639806935e17,
                     1.3858420478349148e18,
                     1000.0000610351562,
                     1000.0000610351562,
                     1612.0,
                 ]
             ],
             device=device,
         )
         ious = pairwise_iou_rotated(boxes1, boxes2)
         self.assertTrue(ious.min() >= 0, ious)
Example #6
0
 def test_iou_too_many_boxes_cuda(self):
     s1, s2 = 5, 1289035
     boxes1 = torch.zeros(s1, 5)
     boxes2 = torch.zeros(s2, 5)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTupleEqual(tuple(ious_cuda.shape), (s1, s2))
Example #7
0
 def test_iou_half_overlap_cuda(self):
     boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32)
     boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32)
     expected_ious = torch.tensor([[0.5]], dtype=torch.float32)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Example #8
0
 def bench():
     for _ in range(n):
         pairwise_iou_rotated(b1, b2)
     if dev.type == "cuda":
         torch.cuda.synchronize()