Example #1
0
 def test_pownd_constraint(self) -> None:
     n = 4
     W, z = Variable(n), Variable()
     np.random.seed(0)
     alpha = 0.5 + np.random.rand(n)
     alpha /= np.sum(alpha)
     with self.assertRaises(ValueError):
         # entries don't sum to one
         con = PowConeND(W, z, alpha + 0.01)
     with self.assertRaises(ValueError):
         # shapes don't match exactly
         con = PowConeND(W, z, alpha.reshape((n, 1)))
     with self.assertRaises(ValueError):
         # wrong axis
         con = PowConeND(reshape_atom(W, (n, 1)),
                         z,
                         alpha.reshape((n, 1)),
                         axis=1)
     # Compute a violation
     con = PowConeND(W, z, alpha)
     W0 = 0.1 + np.random.rand(n)
     z0 = np.prod(np.power(W0, alpha)) + 0.05
     W.value, z.value = W0, z0
     viol = con.violation()
     self.assertGreaterEqual(viol, 0.01)
     self.assertLessEqual(viol, 0.06)
Example #2
0
    def pcp_4(ceei: bool = True):
        """
        A power cone formulation of a Fisher market equilibrium pricing model.
        ceei = Competitive Equilibrium from Equal Incomes
        """
        # Generate test data
        np.random.seed(0)
        n_buyer = 4
        n_items = 6
        V = np.random.rand(n_buyer, n_items)
        X = cp.Variable(shape=(n_buyer, n_items), nonneg=True)
        u = cp.sum(cp.multiply(V, X), axis=1)
        if ceei:
            b = np.ones(n_buyer) / n_buyer
        else:
            b = np.array([0.3, 0.15, 0.2, 0.35])
        log_objective = cp.Maximize(cp.sum(cp.multiply(b, cp.log(u))))
        log_cons = [cp.sum(X, axis=0) <= 1]
        log_prob = cp.Problem(log_objective, log_cons)
        log_prob.solve(solver='SCS', eps=1e-8)
        expect_X = X.value

        z = cp.Variable()
        pow_objective = (cp.Maximize(z), np.exp(log_prob.value))
        pow_cons = [(cp.sum(X, axis=0) <= 1, None),
                    (PowConeND(W=u, z=z, alpha=b), None)]
        pow_vars = [(X, expect_X)]
        sth = STH.SolverTestHelper(pow_objective, pow_vars, pow_cons)
        return sth