Example #1
0
def psd_coeff_offset(problem, c):
    """
    Returns an array "G" and vector "h" such that the given constraint is
      equivalent to "G * z <=_{PSD} h".

    :param problem: the cvxpy Problem in which "c" arises.
    :param c: a cvxpy Constraint defining a linear matrix inequality
      "B + sum_j A[j] * z[j] >=_{PSD} 0".
    :return: (G, h) such that "c" holds at "z" iff "G * z <=_{PSD} b"
      (where the PSD cone is reshaped into a subset of R^N with N = dim ** 2).

    Note: It is desirable to change this mosek interface so that PSD constraints
    are represented by a vector in R^N with N = (dim * (dim + 1) / 2). This is
    possible because arguments to a linear matrix inequality are necessarily
    symmetric. For now we use N = dim ** 2, because it simplifies implementation
    and only makes a modest difference in the size of the problem seen by mosek.
    """
    extractor = CoeffExtractor(InverseData(problem))
    A_vec, b_vec = extractor.affine(c.expr)
    G = -A_vec
    h = b_vec
    dim = c.expr.shape[0]
    return G, h, dim
    def apply(self, problem):
        inverse_data = InverseData(problem)
        # Form the constraints
        extractor = CoeffExtractor(inverse_data)
        params_to_objective, flattened_variable = self.stuffed_objective(
            problem, extractor)
        # Lower equality and inequality to Zero and NonPos.
        cons = []
        for con in problem.constraints:
            if isinstance(con, Equality):
                con = lower_equality(con)
            elif isinstance(con, Inequality):
                con = lower_inequality(con)
            elif isinstance(con, SOC) and con.axis == 1:
                con = SOC(con.args[0],
                          con.args[1].T,
                          axis=0,
                          constr_id=con.constr_id)
            cons.append(con)
        # Reorder constraints to Zero, NonPos, SOC, PSD, EXP.
        constr_map = group_constraints(cons)
        ordered_cons = constr_map[Zero] + constr_map[NonPos] + \
            constr_map[SOC] + constr_map[PSD] + constr_map[ExpCone]
        inverse_data.cons_id_map = {con.id: con.id for con in ordered_cons}

        inverse_data.constraints = ordered_cons
        # Batch expressions together, then split apart.
        expr_list = [arg for c in ordered_cons for arg in c.args]
        params_to_problem_data = extractor.affine(expr_list)

        inverse_data.minimize = type(problem.objective) == Minimize
        new_prob = ParamConeProg(params_to_objective,
                                 flattened_variable, params_to_problem_data,
                                 problem.variables(), inverse_data.var_offsets,
                                 ordered_cons, problem.parameters(),
                                 inverse_data.param_id_map)
        return new_prob, inverse_data
Example #3
0
    def apply(self, problem):
        """See docstring for MatrixStuffing.apply"""
        inverse_data = InverseData(problem)
        # Form the constraints
        extractor = CoeffExtractor(inverse_data)
        params_to_P, params_to_q, flattened_variable = self.stuffed_objective(
            problem, extractor)
        # Lower equality and inequality to Zero and NonPos.
        cons = []
        for con in problem.constraints:
            if isinstance(con, Equality):
                con = lower_equality(con)
            elif isinstance(con, Inequality):
                con = lower_ineq_to_nonpos(con)
            cons.append(con)

        # Reorder constraints to Zero, NonPos.
        constr_map = group_constraints(cons)
        ordered_cons = constr_map[Zero] + constr_map[NonPos]
        inverse_data.cons_id_map = {con.id: con.id for con in ordered_cons}

        inverse_data.constraints = ordered_cons
        # Batch expressions together, then split apart.
        expr_list = [arg for c in ordered_cons for arg in c.args]
        params_to_Ab = extractor.affine(expr_list)

        inverse_data.minimize = type(problem.objective) == Minimize
        new_prob = ParamQuadProg(params_to_P,
                                 params_to_q,
                                 flattened_variable,
                                 params_to_Ab,
                                 problem.variables(),
                                 inverse_data.var_offsets,
                                 ordered_cons,
                                 problem.parameters(),
                                 inverse_data.param_id_map)
        return new_prob, inverse_data
Example #4
0
    def apply(self, problem):
        """Returns a stuffed problem.

        The returned problem is a minimization problem in which every
        constraint in the problem has affine arguments that are expressed in
        the form A @ x + b.


        Parameters
        ----------
        problem: The problem to stuff; the arguments of every constraint
            must be affine
        constraints: A list of constraints, whose arguments are affine

        Returns
        -------
        Problem
            The stuffed problem
        InverseData
            Data for solution retrieval
        """
        inverse_data = InverseData(problem)
        # Form the constraints
        extractor = CoeffExtractor(inverse_data)
        new_obj, new_var, r = self.stuffed_objective(problem, extractor)
        inverse_data.r = r
        # Lower equality and inequality to Zero and NonPos.
        cons = []
        for con in problem.constraints:
            if isinstance(con, Equality):
                con = lower_equality(con)
            elif isinstance(con, Inequality):
                con = lower_inequality(con)
            elif isinstance(con, SOC) and con.axis == 1:
                con = SOC(con.args[0], con.args[1].T, axis=0,
                          constr_id=con.constr_id)
            cons.append(con)

        # Batch expressions together, then split apart.
        expr_list = [arg for c in cons for arg in c.args]
        Afull, bfull = extractor.affine(expr_list)
        if 0 not in Afull.shape and 0 not in bfull.shape:
            Afull = cvxtypes.constant()(Afull)
            bfull = cvxtypes.constant()(bfull)

        new_cons = []
        offset = 0
        for con in cons:
            arg_list = []
            for arg in con.args:
                A = Afull[offset:offset+arg.size, :]
                b = bfull[offset:offset+arg.size]
                arg_list.append(reshape(A*new_var + b, arg.shape))
                offset += arg.size
            new_cons.append(con.copy(arg_list))
            # Map old constraint id to new constraint id.
            inverse_data.cons_id_map[con.id] = new_cons[-1].id

        inverse_data.minimize = type(problem.objective) == Minimize
        new_prob = problems.problem.Problem(Minimize(new_obj), new_cons)
        return new_prob, inverse_data