def main(): place = paddle.set_device(FLAGS.device) paddle.disable_static(place) if FLAGS.dynamic else None im_shape = [-1, 3, 256, 256] input_A = Input(im_shape, 'float32', 'input_A') input_B = Input(im_shape, 'float32', 'input_B') # Generators g_AB = Generator() g_BA = Generator() g = paddle.Model( GeneratorCombine( g_AB, g_BA, is_train=False), inputs=[input_A, input_B]) g.prepare() g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True) if not os.path.exists(FLAGS.output): os.makedirs(FLAGS.output) test_data_A = data.TestDataA() test_data_B = data.TestDataB() for i in range(len(test_data_A)): data_A, A_name = test_data_A[i] data_B, B_name = test_data_B[i] data_A = np.array(data_A).astype("float32") data_B = np.array(data_B).astype("float32") fake_A, fake_B, cyc_A, cyc_B = g.test_batch([data_A, data_B]) datas = [fake_A, fake_B, cyc_A, cyc_B, data_A, data_B] odatas = [] for o in datas: d = np.squeeze(o[0]).transpose([1, 2, 0]) im = ((d + 1) * 127.5).astype(np.uint8) odatas.append(im) imsave(FLAGS.output + "/fakeA_" + B_name, odatas[0]) imsave(FLAGS.output + "/fakeB_" + A_name, odatas[1]) imsave(FLAGS.output + "/cycA_" + A_name, odatas[2]) imsave(FLAGS.output + "/cycB_" + B_name, odatas[3]) imsave(FLAGS.output + "/inputA_" + A_name, odatas[4]) imsave(FLAGS.output + "/inputB_" + B_name, odatas[5])
def main(): place = paddle.set_device(FLAGS.device) paddle.disable_static(place) if FLAGS.dynamic else None im_shape = [-1, 3, 256, 256] input_A = Input(im_shape, 'float32', 'input_A') input_B = Input(im_shape, 'float32', 'input_B') # Generators g_AB = Generator() g_BA = Generator() g = paddle.Model(GeneratorCombine(g_AB, g_BA, is_train=False), inputs=[input_A, input_B]) g.prepare() g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True) out_path = FLAGS.output + "/single" if not os.path.exists(out_path): os.makedirs(out_path) for f in glob.glob(FLAGS.input): image_name = os.path.basename(f) image = Image.open(f).convert('RGB') image = image.resize((256, 256), Image.BICUBIC) image = np.array(image) / 127.5 - 1 image = image[:, :, 0:3].astype("float32") data = image.transpose([2, 0, 1])[np.newaxis, :] if FLAGS.input_style == "A": _, fake, _, _ = g.test_batch([data, data]) if FLAGS.input_style == "B": fake, _, _, _ = g.test_batch([data, data]) fake = np.squeeze(fake[0]).transpose([1, 2, 0]) opath = "{}/fake{}{}".format(out_path, FLAGS.input_style, image_name) imsave(opath, ((fake + 1) * 127.5).astype(np.uint8)) print("transfer {} to {}".format(f, opath))
def main(): place = set_device(FLAGS.device) fluid.enable_dygraph(place) if FLAGS.dynamic else None # Generators g_AB = Generator() g_BA = Generator() # Discriminators d_A = Discriminator() d_B = Discriminator() g = GeneratorCombine(g_AB, g_BA, d_A, d_B) da_params = d_A.parameters() db_params = d_B.parameters() g_params = g_AB.parameters() + g_BA.parameters() da_optimizer = opt(da_params) db_optimizer = opt(db_params) g_optimizer = opt(g_params) im_shape = [None, 3, 256, 256] input_A = Input(im_shape, 'float32', 'input_A') input_B = Input(im_shape, 'float32', 'input_B') fake_A = Input(im_shape, 'float32', 'fake_A') fake_B = Input(im_shape, 'float32', 'fake_B') g_AB.prepare(inputs=[input_A], device=FLAGS.device) g_BA.prepare(inputs=[input_B], device=FLAGS.device) g.prepare(g_optimizer, GLoss(), inputs=[input_A, input_B], device=FLAGS.device) d_A.prepare(da_optimizer, DLoss(), inputs=[input_B, fake_B], device=FLAGS.device) d_B.prepare(db_optimizer, DLoss(), inputs=[input_A, fake_A], device=FLAGS.device) if FLAGS.resume: g.load(FLAGS.resume) loader_A = paddle.io.DataLoader(data.DataA(), places=place, shuffle=True, return_list=True, batch_size=FLAGS.batch_size) loader_B = paddle.io.DataLoader(data.DataB(), places=place, shuffle=True, return_list=True, batch_size=FLAGS.batch_size) A_pool = data.ImagePool() B_pool = data.ImagePool() for epoch in range(FLAGS.epoch): for i, (data_A, data_B) in enumerate(zip(loader_A, loader_B)): data_A = data_A[0][0] if not FLAGS.dynamic else data_A[0] data_B = data_B[0][0] if not FLAGS.dynamic else data_B[0] start = time.time() fake_B = g_AB.test_batch(data_A)[0] fake_A = g_BA.test_batch(data_B)[0] g_loss = g.train_batch([data_A, data_B])[0] fake_pb = B_pool.get(fake_B) da_loss = d_A.train_batch([data_B, fake_pb])[0] fake_pa = A_pool.get(fake_A) db_loss = d_B.train_batch([data_A, fake_pa])[0] t = time.time() - start if i % 20 == 0: print("epoch: {} | step: {:3d} | g_loss: {:.4f} | " \ "da_loss: {:.4f} | db_loss: {:.4f} | s/step {:.4f}". format(epoch, i, g_loss[0], da_loss[0], db_loss[0], t)) g.save('{}/{}'.format(FLAGS.checkpoint_path, epoch))