def test_set_level(self, mock_get_logger, mock_stream_handler): logger = MagicMock(spec=std_logging.Logger) stream_handler = MagicMock(spec=std_logging.Handler) mock_get_logger.return_value = logger mock_stream_handler.return_value = stream_handler driver = logging.make_driver() request = Subject() sink = logging.Sink(request=request) driver.call(sink) request.on_next(logging.SetLevel(logger='foo', level='DEBUG')) mock_get_logger.assert_called_with('foo') logger.setLevel.assert_called_with(std_logging.DEBUG) mock_stream_handler.assert_called_with() stream_handler.setLevel.assert_called_with(std_logging.DEBUG)
def deepspeech_server(sources): argv = sources.argv.argv stt = sources.httpd.route stt_response = sources.deepspeech.text.share() ds_logs = sources.deepspeech.log config_data = sources.file.response http_ds_error, route_ds_error = make_error_router() args = argparse.argparse( argv=argv.skip(1).subscribe_on(aio_scheduler), parser=Observable.just( argparse.Parser(description="deepspeech server")), arguments=Observable.from_([ argparse.ArgumentDef(name='--config', help="Path of the server configuration file") ])) config_file = (args.filter(lambda i: i.key == 'config').map( lambda i: file.Read(id='config', path=i.value))) config = parse_config(config_data).subscribe_on(aio_scheduler) logs_config = (config.flat_map(lambda i: Observable.from_(i.log.level).map( lambda i: logging.SetLevel(logger=i.logger, level=i.level)).concat( Observable.just(logging.SetLevelDone())))) logs = Observable.merge(logs_config, ds_logs) log_ready = sources.logging.response.take(1) ds_stt = (stt.flat_map(lambda i: i.request).map( lambda i: deepspeech.SpeechToText(data=i.data, context=i.context))) ds_arg = ( # config is hot, the combine operator allows to keep its last value # until logging is initialized log_ready.combine_latest( config, lambda _, i: i).map(lambda i: deepspeech.Initialize( model=i.deepspeech.model, alphabet=i.deepspeech.alphabet, lm=i.deepspeech.lm, trie=i.deepspeech.trie, features=deepspeech.FeaturesParameters( n_features=i.deepspeech.features.n_features, n_context=i.deepspeech.features.n_context, beam_width=i.deepspeech.features.beam_width, lm_alpha=i.deepspeech.features.lm_alpha, lm_beta=i.deepspeech.features.lm_beta, ) if i.deepspeech.features is not None else None))) ds = ds_stt.merge(ds_arg) http_init = (config.flat_map(lambda i: Observable.from_([ httpd.Initialize(request_max_size=i.server.http.request_max_size), httpd.AddRoute( methods=['POST'], path='/stt', id='stt', ), httpd.StartServer(host=i.server.http.host, port=i.server.http.port), ]))) http_response = (stt_response.let(lambda x: route_ds_error( x, error_map=lambda e: httpd.Response( data="Speech to text error".encode('utf-8'), context=e.args[0].context, status=500))).map(lambda i: httpd.Response( data=i.text.encode('utf-8'), context=i.context, ))) http = Observable.merge(http_init, http_response, http_ds_error) return DeepspeechSink(file=file.Sink(request=config_file), logging=logging.Sink(request=logs), deepspeech=deepspeech.Sink(speech=ds), httpd=httpd.Sink(control=http))
def deepspeech_server(aio_scheduler, sources): argv = sources.argv.argv stt = sources.httpd.route stt_response = sources.deepspeech.text ds_logs = sources.deepspeech.log http_ds_error, route_ds_error = make_error_router() args = parse_arguments(argv) read_request, read_response = args.pipe( ops.map(lambda i: file.Read(id='config', path=i.value)), file.read(sources.file.response), ) read_request = read_request.pipe( ops.subscribe_on(aio_scheduler), ) config = parse_config(read_response) logs_config = config.pipe( ops.flat_map(lambda i: rx.from_(i.log.level, scheduler=ImmediateScheduler())), ops.map(lambda i: logging.SetLevel(logger=i.logger, level=i.level)), ) logs = rx.merge(logs_config, ds_logs) ds_stt = stt.pipe( ops.flat_map(lambda i: i.request), ops.map(lambda i: deepspeech.SpeechToText(data=i.data, context=i.context)), ) # config is hot, the combine operator allows to keep its last value # until logging is initialized ds_arg = config.pipe( ops.map(lambda i: deepspeech.Initialize( model=i.deepspeech.model, scorer=deepspeech.Scorer( scorer=getattr(i.deepspeech, 'scorer', None), lm_alpha=getattr(i.deepspeech, 'lm_alpha', None), lm_beta=getattr(i.deepspeech, 'lm_beta', None), ), beam_width=getattr(i.deepspeech, 'beam_width', None), )), ) ds = rx.merge(ds_stt, ds_arg) http_init = config.pipe( ops.flat_map(lambda i: rx.from_([ httpd.Initialize(request_max_size=i.server.http.request_max_size), httpd.AddRoute( methods=['POST'], path='/stt', id='stt', headers=MultiDict([('Content-Type', 'text/plain')]), ), httpd.StartServer( host=i.server.http.host, port=i.server.http.port), ])), ) http_response = stt_response.pipe( route_ds_error( error_map=lambda e: httpd.Response( data="Speech to text error".encode('utf-8'), context=e.args[0].context, status=500 )), ops.map(lambda i: httpd.Response( data=i.text.encode('utf-8'), context=i.context, )), ) http = rx.merge(http_init, http_response, http_ds_error) return DeepspeechSink( file=file.Sink(request=read_request), logging=logging.Sink(request=logs), deepspeech=deepspeech.Sink(speech=ds), httpd=httpd.Sink(control=http) )