def plotModuleCorr(cyDf, labels, plotLabel, sampleStr='M', dropped=None, compCommVar=None): """Make a corr plot for a module.""" modDf = makeModuleVariables(cyDf[labels.index], labels, dropped=dropped, sampleStr=sampleStr) modVar = '%s%s' % (sampleStr, plotLabel) cyVars = labels2modules(labels, dropped=None)[plotLabel] if not compCommVar is None: cyVars.append(compCommVar) tmpDf = cyDf[cyVars].join(modDf[modVar]).copy() """Rename dropped columns with an asterisk but leave them on the plot""" if not dropped is None: tmpDf.columns = np.array([ c + '*' if c in dropped and dropped[c] else c for c in tmpDf.columns ]) figh = plt.gcf() figh.clf() combocorrplot(tmpDf, method='pearson') axh = plt.gca() axh.annotate('%s%s' % (sampleStr, plotLabel), xy=(0.5, 0.99), xycoords='figure fraction', va='top', ha='center')
def plot_module_correl(clust_object, folder): """Plot intra-module correlation""" i = 0 for lab in list( cy.labels2modules(clust_object.labels, clust_object.dropped).keys()): plt.figure(50 + i, figsize=(15, 9)) cyplot.plotModuleCorr(clust_object.cyDf, clust_object.labels, lab, dropped=clust_object.dropped) plt.figure(50 + i).savefig(os.path.join( folder, '%s_modules_correlations_%s.png' % (clust_object.name, lab)), dpi=300) i += 1
def plot_modules(clust_object, folder): '''Plot cytomod object modules information''' """Hierarchical clustering heatmap""" plt.figure(41, figsize=(15.5, 9.5)) # colInds = plotHColCluster(ds[s].cyDf, method='complete', metric='pearson-signed', col_labels=ds[s].labels, col_dmat=ds[s].dmatDf) colInds = plotHColCluster(clust_object.cyDf, method='complete', metric='pearson-signed', col_labels=clust_object.labels, save_path=os.path.join( folder, '%s_hierchical_clust_heatmap.png' % clust_object.name)) # plt.figure(41).savefig(os.path.join(folder, '%s_hierchical_clust_heatmap.png' % clust_object.name)) """Heatmaps of pairwise reliability""" plt.figure(43, figsize=(15.5, 9.5)) colInds = cyplot.plotHierClust(1 - clust_object.pwrel, clust_object.Z, labels=clust_object.labels, titleStr='Pairwise reliability (%s)' % clust_object.name.replace('_', ' '), vRange=(0, 1)) plt.figure(43).savefig(os.path.join(folder, '%s_pwrel.png' % clust_object.name), dpi=300) """color_label_legend""" plt.figure(48, figsize=(3, 3)) plt.clf() axh = plt.subplot(1, 1, 1) colorLegend(palettable.colorbrewer.qualitative.Set3_6.mpl_colors, ['%s' % s for s in clust_object.modDf.columns], loc=10) axh.spines['right'].set_color('none') axh.spines['left'].set_color('none') axh.spines['top'].set_color('none') axh.spines['bottom'].set_color('none') axh.set_xticks([]) axh.set_yticks([]) axh.set_facecolor('white') plt.figure(48).savefig(os.path.join(folder, 'color_label_legend.png'), dpi=300) """Plot intra-module correlation""" plt.figure(50, figsize=(15, 9)) for lab in list( cy.labels2modules(clust_object.labels, clust_object.dropped).keys()): cyplot.plotModuleCorr(clust_object.cyDf, clust_object.labels, lab, dropped=clust_object.dropped) plt.figure(50).savefig(os.path.join( folder, '%s_mod_corr_%s.png' % (clust_object.name, lab)), dpi=300) """Cytokine embedding""" plt.figure(901, figsize=(13, 9.7)) cyplot.plotModuleEmbedding(clust_object.dmatDf, clust_object.labels, method='kpca') colors = palettable.colorbrewer.get_map( 'Set1', 'qualitative', len(np.unique(clust_object.labels))).mpl_colors colorLegend(colors, [ '%s%1.0f' % (clust_object.sampleStr, i) for i in np.unique(clust_object.labels) ], loc='lower left') plt.figure(901).savefig(os.path.join(folder, '%sembed.png' % clust_object.name), dpi=300)