def testPositions(self): # Create a new positions v = czml.Positions() l = geometry.LineString([(0, 0), (1, 1)]) r = geometry.LinearRing([(0, 0), (1, 1), (1, 0), (0, 0)]) ext = [(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)] int_1 = [(0.5, 0.25), (1.5, 0.25), (1.5, 1.25), (0.5, 1.25), (0.5, 0.25)] int_2 = [(0.5, 1.25), (1, 1.25), (1, 1.75), (0.5, 1.75), (0.5, 1.25)] p = geometry.Polygon(ext, [int_1, int_2]) v.cartesian = l v.cartographicDegrees = r v.cartographicRadians = p self.assertEqual( v.data(), { 'cartesian': [0.0, 0.0, 0, 1.0, 1.0, 0], 'cartographicRadians': [ 0.0, 0.0, 0, 0.0, 2.0, 0, 2.0, 2.0, 0, 2.0, 0.0, 0, 0.0, 0.0, 0 ], 'cartographicDegrees': [0.0, 0.0, 0, 1.0, 1.0, 0, 1.0, 0.0, 0, 0.0, 0.0, 0] }) # Modify an existing positions v.cartesian = None v.cartographicDegrees = None v.cartographicRadians = [0.0, 0.0, .0, 1.0, 1.0, 1.0] self.assertEqual( v.data(), {'cartographicRadians': [0.0, 0.0, 0.0, 1.0, 1.0, 1.0]}) # Create a new positions from an existing positions v2 = czml.Positions() v2.loads(v.dumps()) self.assertEqual(v.data(), v2.data())
coordinates = [] current_time = datetime.datetime(year=2020, month=1, day=1, hour=12) for segment in segments: points_db.append(segment.points) for point in segment.points: flat_points.append(point) coordinates.append(current_time) coordinates.append(segment.lat) coordinates.append(segment.long) coordinates.append(0) current_time += datetime.timedelta(minutes=180) # # packet = czml.CZMLPacket(id=f"train", status="moving") positions = czml.Positions(cartographicDegrees=flat_points) packet.position = czml.Position(cartographicDegrees=coordinates) print((points_db[0][-1], points_db[0][-2], 0)) print(points_db[0]) bb = czml.Billboard(scale=0.1, show=True) bb.image = "https://terriamap.iorama.geosynergy.com.au/train_express.png" bb.color = {'rgba': [255, 255, 255, 255]} packet.billboard = bb doc.packets.append(packet) for index, rail in enumerate(payload): # rail = segment.rail positions = multilinestring_to_positions(rail, False, index) packet = czml.CZMLPacket(
def testPolygon(self): # Create a new polygon img = czml.Image(image='http://localhost/img.png', repeat=2) mat = czml.Material(image=img) pts = geometry.LineString([(50, 20, 2), (60, 30, 3), (50, 30, 4), (60, 20, 5)]) pos = czml.Positions(cartographicDegrees=pts) col = {'rgba': [0, 255, 127, 55]} pol = czml.Polygon(show=True, material=mat, positions=pos, perPositionHeight=True, fill=True, outline=True, outlineColor=col) self.assertEqual( pol.data(), { 'show': True, 'fill': True, 'outline': True, 'perPositionHeight': True, 'outlineColor': { 'rgba': [0, 255, 127, 55] }, 'material': { 'image': { 'image': 'http://localhost/img.png', 'repeat': 2 }, }, 'positions': { 'cartographicDegrees': [50, 20, 2, 60, 30, 3, 50, 30, 4, 60, 20, 5] }, }) # Create a new polygon from an existing polygon pol2 = czml.Polygon() pol2.loads(pol.dumps()) self.assertEqual(pol2.data(), pol.data()) # Modify an existing polygon grid = czml.Grid(color={'rgba': [0, 55, 127, 255]}, cellAlpha=0.4, lineCount=5, lineThickness=2, lineOffset=0.3) mat2 = czml.Material(grid=grid) pts2 = geometry.LineString([(1.5, 1.2, 0), (1.6, 1.3, 0), (1.5, 1.3, 0), (1.6, 1.2, 0)]) pos2 = czml.Positions(cartographicRadians=pts2) pol2.material = mat2 pol2.positions = pos2 pol2.perPositionHeight = False pol2.height = 7 pol2.extrudedHeight = 30 self.assertEqual( pol2.data(), { 'show': True, 'fill': True, 'outline': True, 'perPositionHeight': False, 'height': 7, 'extrudedHeight': 30, 'outlineColor': { 'rgba': [0, 255, 127, 55] }, 'material': { 'grid': { 'color': { 'rgba': [0, 55, 127, 255] }, 'cellAlpha': 0.4, 'lineCount': 5, 'lineThickness': 2, 'lineOffset': 0.3 }, }, 'positions': { 'cartographicRadians': [1.5, 1.2, 0, 1.6, 1.3, 0, 1.5, 1.3, 0, 1.6, 1.2, 0] }, }) # Add a polygon to a CZML packet packet = czml.CZMLPacket(id='abc') packet.polygon = pol2 self.assertEqual( packet.data(), { 'id': 'abc', 'polygon': { 'show': True, 'fill': True, 'outline': True, 'perPositionHeight': False, 'height': 7, 'extrudedHeight': 30, 'outlineColor': { 'rgba': [0, 255, 127, 55] }, 'material': { 'grid': { 'color': { 'rgba': [0, 55, 127, 255] }, 'cellAlpha': 0.4, 'lineCount': 5, 'lineThickness': 2, 'lineOffset': 0.3 }, }, 'positions': { 'cartographicRadians': [1.5, 1.2, 0, 1.6, 1.3, 0, 1.5, 1.3, 0, 1.6, 1.2, 0] }, }, })
def testPolyline(self): # Create a new polyline sc = czml.SolidColor(color={'rgba': [0, 255, 127, 55]}) m1 = czml.Material(solidColor=sc) c1 = geometry.LineString([(-162, 41, 0), (-151, 43, 0), (-140, 45, 0)]) v1 = czml.Positions(cartographicDegrees=c1) p1 = czml.Polyline(show=True, width=5, followSurface=False, material=m1, positions=v1) self.assertEqual( p1.data(), { 'show': True, 'width': 5, 'followSurface': False, 'material': { 'solidColor': { 'color': { 'rgba': [0, 255, 127, 55] } }, }, 'positions': { 'cartographicDegrees': [-162, 41, 0, -151, 43, 0, -140, 45, 0] }, }) # Create a new polyline pg = czml.PolylineGlow(color={'rgba': [0, 255, 127, 55]}, glowPower=0.25) m2 = czml.Material(polylineGlow=pg) c2 = geometry.LineString([(1.6, 5.3, 10), (2.4, 4.2, 20), (3.8, 3.1, 30)]) v2 = czml.Positions(cartographicRadians=c2) p2 = czml.Polyline(show=False, width=7, followSurface=True, material=m2, positions=v2) self.assertEqual( p2.data(), { 'show': False, 'width': 7, 'followSurface': True, 'material': { 'polylineGlow': { 'color': { 'rgba': [0, 255, 127, 55] }, 'glowPower': 0.25 }, }, 'positions': { 'cartographicRadians': [1.6, 5.3, 10, 2.4, 4.2, 20, 3.8, 3.1, 30] }, }) # Create a polyline from an existing polyline p3 = czml.Polyline() p3.loads(p2.dumps()) self.assertEqual(p3.data(), p2.data()) # Modify an existing polyline po = czml.PolylineOutline(color={'rgba': [0, 255, 127, 55]}, outlineColor={'rgba': [0, 55, 127, 255]}, outlineWidth=4) m3 = czml.Material(polylineOutline=po) c3 = geometry.LineString([(1000, 7500, 90), (2000, 6500, 50), (3000, 5500, 20)]) v3 = czml.Positions(cartesian=c3) p3.material = m3 p3.positions = v3 self.assertEqual( p3.data(), { 'show': False, 'width': 7, 'followSurface': True, 'material': { 'polylineOutline': { 'color': { 'rgba': [0, 255, 127, 55] }, 'outlineColor': { 'rgba': [0, 55, 127, 255] }, 'outlineWidth': 4 }, }, 'positions': { 'cartesian': [1000, 7500, 90, 2000, 6500, 50, 3000, 5500, 20] }, }) # Add a polyline to a CZML packet packet = czml.CZMLPacket(id='abc') packet.polyline = p3 self.assertEqual( packet.data(), { 'id': 'abc', 'polyline': { 'show': False, 'width': 7, 'followSurface': True, 'material': { 'polylineOutline': { 'color': { 'rgba': [0, 255, 127, 55] }, 'outlineColor': { 'rgba': [0, 55, 127, 255] }, 'outlineWidth': 4 }, }, 'positions': { 'cartesian': [1000, 7500, 90, 2000, 6500, 50, 3000, 5500, 20] }, }, })
def czml(self): doc = czml.CZML(); iso = self.date.isoformat() # Generate time-specific lists for various objects central_polyline_degrees = [] north_polyline_degrees = [] south_polyline_degrees = [] ellipse_position = [] ellipse_semiMajorAxis = [] ellipse_semiMinorAxis = [] ellipse_rotation = [] for t in range(len(self.time)): time = iso + "T" + self.time[t] + ":00Z" # Define polyline waypoints only where data exist if self.position['north'][t] != None: north_polyline_degrees += [self.position['north'][t][0], self.position['north'][t][1], 0.0] if self.position['central'][t] != None: central_polyline_degrees += [self.position['central'][t][0], self.position['central'][t][1], 0.0] if self.position['south'][t] != None: south_polyline_degrees += [self.position['south'][t][0], self.position['south'][t][1], 0.0] # Define ellipse positions and attributes for every time in the interval, using limits where necessary use_limit = min(int(math.floor(t/(len(self.time)/2))),1) if self.position['north'][t] == None: north = self.limits['north'][use_limit] else: north = self.position['north'][t] if self.position['central'][t] == None: central = self.limits['central'][use_limit] else: central = self.position['central'][t] if self.position['south'][t] == None: south = self.limits['south'][use_limit] else: south = self.position['south'][t] # Approximate ellipse semiMajorAxis from vincenty distance between limit polylines north2 = (north[1], north[0]) south2 = (south[1], south[0]) semi_major_axis = vincenty(north2, south2).meters / 2 # Approximate elipse semiMinorAxis from sun altitude (probably way wrong!) ellipse_axis_ratio = self.sun_altitude[t] / 90 semi_minor_axis = semi_major_axis * ellipse_axis_ratio # Approximate ellipse rotation using basic spheroid (TODO: replace with WGS-84) # Calculate bearing in both directions and average them nlat = north[1]/180 * math.pi; nlon = north[0]/180 * math.pi; clat = central[1]/180 * math.pi; clon = central[0]/180 * math.pi; slat = south[1]/180 * math.pi; slon = south[0]/180 * math.pi; y = math.sin(slon-nlon) * math.cos(slat); x = math.cos(nlat) * math.sin(slat) - math.sin(nlat) * math.cos(slat) * math.cos(slon-nlon); initial_bearing = math.atan2(y, x) if (initial_bearing < 0): initial_bearing += math.pi * 2 y = math.sin(nlon-slon) * math.cos(nlat); x = math.cos(slat) * math.sin(nlat) - math.sin(slat) * math.cos(nlat) * math.cos(nlon-slon); final_bearing = math.atan2(y, x) - math.pi if (final_bearing < 0): final_bearing += math.pi * 2 rotation = -1 * ((initial_bearing + final_bearing) / 2 - (math.pi / 2)) ellipse_position += [time, central[0], central[1], 0.0] ellipse_semiMajorAxis += [time, round(semi_major_axis, 3)] ellipse_semiMinorAxis += [time, round(semi_minor_axis, 3)] ellipse_rotation += [time, round(rotation, 3)] # Generate document packet with clock start_time = iso + "T" + self.time[0] + ":00Z" end_time = iso + "T" + self.time[-1] + ":00Z" packet = czml.CZMLPacket(id='document',version='1.0') c = czml.Clock() c.multiplier = 300 c.range = "LOOP_STOP" c.step = "SYSTEM_CLOCK_MULTIPLIER" c.currentTime = start_time c.interval = start_time + "/" + end_time packet.clock = c doc.packets.append(packet) # Generate a polyline packet for the north and south polylines, connected and filled limit_polyline_degrees = list(north_polyline_degrees) point = len(south_polyline_degrees)/3 while (point > 0): offset = (point-1) * 3 limit_polyline_degrees += [ south_polyline_degrees[offset], south_polyline_degrees[offset+1], south_polyline_degrees[offset+2] ] point -= 1 packet_id = iso + '_bounds_polygon' packet = czml.CZMLPacket(id=packet_id) boc = czml.Color(rgba=(232, 72, 68, 255)) bsc = czml.SolidColor(color=czml.Color(rgba=(0, 0, 0, 66))) bmat = czml.Material(solidColor=bsc) bdeg = limit_polyline_degrees bpos = czml.Positions(cartographicDegrees=bdeg) bpg = czml.Polygon(show=True, height=0, outline=True, outlineColor=boc, outlineWidth=2, material=bmat, positions=bpos) packet.polygon = bpg doc.packets.append(packet) # Generate central polyline packet packet_id = iso + '_central_polyline' packet = czml.CZMLPacket(id=packet_id) csc = czml.SolidColor(color=czml.Color(rgba=(241, 226, 57, 255))) cmat = czml.Material(solidColor=csc) cpos = czml.Positions(cartographicDegrees=central_polyline_degrees) cpl = czml.Polyline(show=True, width=4, followSurface=True, material=cmat, positions=cpos) packet.polyline = cpl doc.packets.append(packet) # Generate ellipse shadow packet packet_id = iso + '_shadow_ellipse' packet = czml.CZMLPacket(id=packet_id) esc = czml.SolidColor(color=czml.Color(rgba=(0, 0, 0, 160))) emat = czml.Material(solidColor=esc) xmaj = czml.Number(ellipse_semiMajorAxis) xmin = czml.Number(ellipse_semiMinorAxis) rot = czml.Number(ellipse_rotation) ell = czml.Ellipse(show=True, fill=True, granularity=0.002, material=emat, semiMajorAxis=xmaj, semiMinorAxis=xmin, rotation=rot) packet.ellipse = ell packet.position = czml.Position(cartographicDegrees=ellipse_position) doc.packets.append(packet) return list(doc.data())