Example #1
0
def fit_and_plot_gluon(wd):
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize(init.Normal(sigma=1))
    # 对权重参数衰减。权重名称一般是以weight结尾
    trainer_w = gluon.Trainer(net.collect_params(".*weight"), "sgd", {
        "learning_rate": lr,
        "wd": wd
    })
    # 不对偏差参数衰减。偏差名称一般是以bias结尾
    trainer_b = gluon.Trainer(net.collect_params(".*bias"), "sgd",
                              {"learning_rate": lr})
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            trainer_w.step(batch_size)
            trainer_b.step(batch_size)
        train_ls.append(
            loss(net(train_features), train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features), test_labels).mean().asscalar())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, "epochs", "loss",
                 range(1, num_epochs + 1), test_ls, ["train", "test"])
    print("L2 norm of w", net[0].weight.data().norm().asscalar())
Example #2
0
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(
            net,
            data[0],
            data[1],
            data[2],
            data[3],
            num_epochs,
            learning_rate,
            # train_ls, valid_ls = train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate,
            weight_decay,
            batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f' %
              (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k
Example #3
0
def fit_and_plot(train_features, test_features, train_labels, test_labels):
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize()
    batch_size = min(10, train_labels.shape[0])
    train_iter = gdata.DataLoader(gdata.ArrayDataset(train_features,
                                                     train_labels),
                                  batch_size,
                                  shuffle=True)
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': 0.01})
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            trainer.step(batch_size)
        train_ls.append(
            loss(net(train_features), train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features), test_labels).mean().asscalar())
    print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('weight:', net[0].weight.data().asnumpy(), '\nbias:',
          net[0].bias.data().asnumpy())
Example #4
0
def fit_and_plot_gluon(wd):
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize(init.Normal(sigma=1))
    # add attenuation to weight
    trainer_w = gluon.Trainer(net.collect_params('.*weight'), 'sgd',
                              {'learning_rate': lr, 'wd': wd})
    # don't add attenuation to bias
    trainer_b = gluon.Trainer(net.collect_params('.*bias'), 'sgd',
                              {'learning_rate': lr})
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for x, y in train_iter:
            with autograd.record():
                l = loss(net(x), y)
            l.backward()
            # update wight and bias with function step
            trainer_w.step(batch_size)
            trainer_b.step(batch_size)
        train_ls.append(loss(net(train_features),
                             train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features),
                            test_labels).mean().asscalar())
    #print('true w: ', trainer_w.mean())
    print('L2 norm of w:', net[0].weight.data().norm().asscalar())
    print('final epoch: train loss ', train_ls[-1], 'test loss', test_ls[-1])
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
Example #5
0
def fit_and_plot_gluon(wd):
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize(init.Normal(sigma=1))
    # 对权重参数衰减。权重名称一般是以weight结尾
    trainer_w = gluon.Trainer(net.collect_params('.*weight'), 'sgd', {
        'learning_rate': lr,
        'wd': wd
    })
    # 不对偏差参数衰减。偏差名称一般是以bias结尾
    trainer_b = gluon.Trainer(net.collect_params('.*bias'), 'sgd',
                              {'learning_rate': lr})
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            # 对两个Trainer实例分别调用step函数,从而分别更新权重和偏差
            trainer_w.step(batch_size)
            trainer_b.step(batch_size)
        train_ls.append(
            loss(net(train_features), train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features), test_labels).mean().asscalar())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', net[0].weight.data().norm().asscalar())
Example #6
0
def train_and_pred(train_features, test_features, train_lables, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net()
    train_ls, _ = train(net, train_features, train_lables, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])
    preds = net(train_features).asnumpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
Example #7
0
def train_and_pred(train_features,test_features,train_labels,test_data,num_epochs,learning_rate,weight_decay,batch_size):
    net = get_net()
    train_ls, _ = train(net, train_features, train_labels, None,None,num_epochs,learning_rate,weight_decay,batch_size)
    d2l.semilogy(range(1, num_epochs + 1),train_ls,'epochs','rmse')
    print('train rmse %f' % train_ls[-1])
    preds = net(test_features).asnumpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1,-1)[0])
    submission = pd.concat(test_data['Id',test_data['SalePrice']],axis = 1)   #生成test_data的预测值文件
    submission.to_csv('submission.csv',index=False)
Example #8
0
def train_and_pred(train_features,test_features,train_labels,test_data,num_epochs,lr,weight_decay,batch_size):
    net = get_net()
    train_ls,_ =train(net,train_features,train_labels,None,None,num_epochs,lr,weight_decay,batch_size)
    d2l.semilogy(range(1,num_epochs+1),train_ls,'epochs','rmse')
    print("train rmse %f"%train_ls[-1])
    preds = net(test_features).asnumpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1,-1)[0])
    submission = pd.concat([test_data["Id"],test_data["SalePrice"]],axis=1)
    submission.to_csv("E:/Download/kaggle_house/submission.csv",index=False)
Example #9
0
def train_and_pred(train_features,test_features,
                   train_labels,test_data,
                   num_epochs,lr,weight_decay,batch_size):
    net = get_net()
    train_ls,_ = train(net,train_features,train_labels,None,None,
                       num_epochs,lr,weight_decay,batch_size)

    d2l.semilogy(range(1,num_epochs+1),train_ls,'epochs','rmse')
    print('train rmse %f' %train_ls[-1])

    # 直接将test_data的最后一列labels填上预测值,然后生成csv
    preds = net(test_features).asnumpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1,-1)[0])
    submission = pd.concat([test_data['Id'],test_data['SalePrice']],axis=1)
    submission.to_csv('submission.csv',index=False) # index的意思是,是否保留行索引
Example #10
0
def pit_and_plot(lambd):
    w,b = init_params()                        # 初始化模型参数
    train_l, test_l = [], []
    for _ in range(num_epochs):
        for X,y in train_iter:
            with autograd.record():
                # 增加L2番薯惩罚
                l = loss(net(X, w, b), y) + lambd*l2_penalty(w)
            l.backward()
            d2l.sgd([w,b], lr, batch_size)
        train_l.append(loss(net(train_features, w, b), train_labels).mean().asscalar())
        test_l.append(loss(net(test_features, w, b), test_labels).mean().asscalar())
    d2l.semilogy(range(1, num_epochs+1), train_l, 'epochs', 'loss',
                 range(1, num_epochs+1), test_l, ['train', 'test'], figsize=(15, 5))
    print('L2 norm of w:', w.norm().asscalar())
Example #11
0
def fit_and_plot(lambd):
    w, b = init_params()
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
            l.backward()
            d2l.sgd([w, b], lr, batch_size)
        train_ls.append(
            loss(net(train_features, w, b), train_labels).mean().asscalar())
        test_ls.append(
            loss(net(test_features, w, b), test_labels).mean().asscalar())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, "epochs", "loss",
                 range(1, num_epochs + 1), test_ls, ["train", "test"])
    print("L2 norm of w", w.norm().asscalar())
Example #12
0
def k_fold(k, x_train, y_train, num_epochs, batch_size, learning_rate,
           weight_decay):
    train_l_sum, valid_l_sum = 0, 0

    for i in range(k):
        data = get_k_fold_data(k, i, x_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, batch_size,
                                   learning_rate, weight_decay)
        train_l_sum += train_ls[-1]
        valid_l_sum += train_ls[-1]

        if (i == 0):
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        return train_l_sum / k, valid_l_sum / k
def fit_and_plot(lambd):
    w, b = init_params()
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                # 添加了L2范数惩罚项,广播机制使其变成长度为batch_size的向量
                l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
            l.backward()
            d2l.sgd([w, b], lr, batch_size)
        train_ls.append(
            loss(net(train_features, w, b), train_labels).mean().asscalar())
        test_ls.append(
            loss(net(test_features, w, b), test_labels).mean().asscalar())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', w.norm().asscalar())
Example #14
0
def k_fold(k, x_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):  # k == 5
        data = get_k_fold_data(k, i, x_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse: %f, valid rmse: %f' %
              (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k
Example #15
0
def k_fold(k, X_train, y_train, num_epochs,
           learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,     # *data data是一个列表,*data会分别开其中对应位置的元素赋给对应的函数参数
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',    #semilogy绘图函数
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f'
              % (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k
Example #16
0
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k,i,X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]

        if i == 0:
            # """Plot x and log(y)."""
            d2lzh.semilogy(
                range(1, num_epochs+1), train_ls, "epoch", "rmse",
                range(1, num_epochs+1), valid_ls, legend=["train", "valid"]
            )
        print("fold %d, train rmse %f, valid rmse %f" % (i, train_ls[-1], valid_ls[-1]))

    return train_l_sum/k,valid_l_sum/k
Example #17
0
def fit_and_plot(lambd):
    w, b = init_params()
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for x, y in train_iter:
            with autograd.record():
                l = loss(net(x, w, b), y) + lambd * l2_penalty(w)
            l.backward()
        d2l.sgd([w, b], lr, batch_size)
        train_ls.append(loss(net(train_features, w, b),
                             train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features, w, b),
                             test_labels).mean().asscalar())
    print('true w: ', w.mean())
    print('L2 norm of w:', w.norm().asscalar())
    print('final epoch: train loss ', train_ls[-1], 'test loss', test_ls[-1])
    d2l.semilogy(range(1, num_epochs+1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs+1), test_ls, ['train', 'test'])
Example #18
0
def k_fold(k,X_train,y_train,num_epochs, # 重点在于关乎data生成 --> 投入训练得到误差
           learning_rate,weight_decay,batch_size): # 注意只投入训练数据!!
    train_l_sum ,valid_l_sum = 0,0

    # 共k次训练,每次训练又有epochs轮!!!
    for i in range(k): # 准备训练,为了获得误差!!然后画图。
        data = get_k_fold_data(k,i,X_train,y_train)
        net = get_net()
        # *data 前面有*是因为表示输入任意个!!
        train_ls,valid_ls = train(net,*data,num_epochs,learning_rate,weight_decay,batch_size)
        train_l_sum += train_ls[-1] # 取最后一个批次的损失,只是为了取损失!!
        valid_l_sum += valid_ls[-1]

        if i==0: # 如果是首个k-fold,就画图.别问为啥,再问自己改
            print('i draw once!!!')
            d2l.semilogy(range(1,num_epochs+1),train_ls,'epochs','rmse',
                         range(1,num_epochs+1),valid_ls,
                         ['train','valid']) # 作图函数,p62
        print('fold %d ,train rmse %f,valid rmse %f' %(i,train_ls[-1],valid_ls[-1]))

    return train_l_sum / k ,valid_l_sum / k
Example #19
0
def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net()

    ###########################
    # 用k_fold方法进行训练
    ###########################
    # train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
    # print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))

    ###########################
    # 用普通方法进行训练
    ###########################
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])

    preds = net(test_features).asnumpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('submission.csv', index=False)
Example #20
0
def fit_and_plot(lambd):
    # w     <NDArray 200x1 @cpu(0)>
    # b     <NDArray 1x1 @cpu(0)>
    w, b = init_params()
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        # 训练100次(梯度下降100次)
        for X, y in train_iter:
            # 训练批次为20,每一次取出一个训练,一共训练20次

            # X <NDArray 1x200 @cpu(0)>
            # y <NDArray 1x1 @cpu(0)>
            with autograd.record():
                # 添加了L2范数惩罚项,广播机制使其变成长度为batch_size的向量
                # loss + λ / 2 * ||w||2
                #
                #                L2范数的平方
                #
                # 带惩罚函数的损失

                # 惩罚函数
                # λ / 2 * (∥w∥ ** 2)
                # l2_penalty = (w ** 2).sum() / 2
                # lambd * l2_penalty(w) = lambd / 2 * ((w ** 2).sum())

                # 损失计算
                # nd.dot(X, w) + b
                # X - <NDArray 1x200 @cpu(0)>
                # w - <NDArray 200x1 @cpu(0)>
                # b - <NDArray 1 @cpu(0)>
                netResult = net(X, w, b)
                lossO = loss(netResult, y)
                l = lossO + lambd * l2_penalty(w)

                # l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
            # 计算梯度
            l.backward()

            # batch_size        1
            # lr                0.003
            # [w, b]            [200 x 1, 1 x 1]
            # 梯度下降
            d2l.sgd([w, b], lr, batch_size)

        # train_features    *   w   +   b       =       y
        # 20x200                200x1   1x1             20x1
        train_ls.append(
            loss(net(train_features, w, b), train_labels).mean().asscalar())
        test_ls.append(
            loss(net(test_features, w, b), test_labels).mean().asscalar())

    # 100次的训练,每次训练数据的损失都在降低,但是测试数据的损失一直很高
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])

    # --------------------normTest--------------------
    # TTT1 = nd.array((1,2,3,4)).reshape((1, 4))
    # 1 + 4 + 9 + 16 = 30
    # TTT2 = TTT1.norm().asscalar()
    # --------------------normTest--------------------

    print('L2 norm of w:', w.norm().asscalar())