def f_2d(x1, x2):
    return 0.1 * x1**2 + 2 * x2**2


eta = 0.4
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad), eta)
eta = 2
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad), eta)

features, labels = d2l.get_data_ch7()


def init_adagrad_states():
    s_w = torch.zeros((features.shape[1], 1), dtype=torch.float32)
    s_b = torch.zeros(1, dtype=torch.float32)
    return (s_w, s_b)


def adagrad(params, states, hyperparams):
    eps = 1e-6
    for p, s in zip(params, states):
        s.data += (p.grad.data**2)
        p.data -= hyperparams['lr'] * p.grad.data / torch.sqrt(s + eps)


d2l.train_ch7(adagrad, init_adagrad_states(), {
    'lr': 0.1,
    'momentum': 0
}, features, labels)
Example #2
0
def init_adam_states():
    v_w, v_b = torch.zeros(
        (features.shape[1], 1),
        dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    s_w, s_b = torch.zeros(
        (features.shape[1], 1),
        dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    return ((v_w, s_w), (v_b, s_b))


def adam(params, states, hyperparams):
    beta1, beta2, eps = 0.9, 0.999, 1e-6
    for p, (v, s) in zip(params, states):
        v[:] = beta1 * v + (1 - beta1) * p.grad.data
        s[:] = beta2 * s + (1 - beta2) * p.grad.data**2
        v_bias_corr = v / (1 - beta1**hyperparams['t'])
        s_bias_corr = s / (1 - beta2**hyperparams['t'])
        p.data -= hyperparams['lr'] * v_bias_corr / (torch.sqrt(s_bias_corr) +
                                                     eps)
    hyperparams['t'] += 1


d2l.train_ch7(adam, init_adam_states(), {'lr': 0.01, 't': 1}, features, labels)
plt.show()

# 简洁实现
d2l.train_pytorch_ch7(torch.optim.Adam, {'lr': 0.01}, features, labels)
plt.show()

print("*" * 50)
Example #3
0

def init_momentum_states():
    v_w = torch.zeros((features.shape[1], 1), dtype=torch.float32)
    v_b = torch.zeros(1, dtype=torch.float32)
    return (v_w, v_b)


def sgd_momentum(params, states, hyperparams):
    for p, v in zip(params, states):
        v.data = hyperparams['momentum'] * v.data + hyperparams[
            'lr'] * p.grad.data
        p.data -= v.data


d2l.train_ch7(sgd_momentum, init_momentum_states(), {
    'lr': 0.02,
    'momentum': 0.5
}, features, labels)
d2l.train_ch7(sgd_momentum, init_momentum_states(), {
    'lr': 0.02,
    'momentum': 0.9
}, features, labels)
d2l.train_ch7(sgd_momentum, init_momentum_states(), {
    'lr': 0.004,
    'momentum': 0.9
}, features, labels)
d2l.train_pytorch_ch7(torch.optim.SGD, {
    'lr': 0.004,
    'momentum': 0.9
}, features, labels)
sys.path.append("..")
import d2lzh_pytorch as d2l

def rmsprop_2d(x1, x2, s1, s2):
    g1, g2, eps = 0.2 * x1, 4 * x2, 1e-6
    s1 = gamma * s1 + (1 - gamma) * g1 ** 2
    s2 = gamma * s2 + (1 - gamma) * g2 ** 2
    x1 -= eta / math.sqrt(s1 + eps) * g1
    x2 -= eta / math.sqrt(s2 + eps) * g2
    return x1, x2, s1, s2

def f_2d(x1, x2):
    return 0.1 * x1 ** 2 + 2 * x2 ** 2

eta, gamma = 0.4, 0.9
d2l.show_trace_2d(f_2d, d2l.train_2d(rmsprop_2d),eta)

features, labels = d2l.get_data_ch7()
def init_rmsprop_states():
    s_w = torch.zeros((features.shape[1], 1), dtype = torch.float32)
    s_b = torch.zeros(1, dtype = torch.float32)
    return (s_w, s_b)

def rmsprop(params, states, hyperparams):
    gamma, eps = hyperparams['gamma'], 1e-6
    for p, s in zip(params, states):
        s.data = gamma * s.data + (1 - gamma) * (p.grad.data) ** 2
        p.data -= hyperparams['lr'] * p.grad.data / torch.sqrt(s + eps)

d2l.train_ch7(rmsprop, init_rmsprop_states(), {'lr': 0.01, 'gamma': 0.9, 'momentum':0}, features, labels)
Example #5
0
import torch
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l

features, labels = d2l.get_data_ch7()


def init_adadelta_states():
    s_w, s_b = torch.zeros(
        (features.shape[1], 1),
        dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    delta_w, delta_b = torch.zeros(
        (features.shape[1], 1),
        dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    return ((s_w, delta_w), (s_b, delta_b))


def adadelta(params, states, hyperparams):
    rho, eps = hyperparams['rho'], 1e-5
    for p, (s, delta) in zip(params, states):
        s[:] = rho * s + (1 - rho) * (p.grad.data**2)
        g = p.grad.data * torch.sqrt((delta + eps) / (s + eps))
        p.data -= g
        delta[:] = rho * delta + (1 - rho) * g * g


d2l.train_ch7(adadelta, init_adadelta_states(), {
    'rho': 0.9,
    'momentum': 0
}, features, labels)