def main(args): dataset, env = get_pybullet(args.dataset) d3rlpy.seed(args.seed) train_episodes, test_episodes = train_test_split(dataset, test_size=0.2) device = None if args.gpu is None else Device(args.gpu) cql = CQL(n_epochs=100, q_func_type=args.q_func_type, use_gpu=device) cql.fit(train_episodes, eval_episodes=test_episodes, scorers={ 'environment': evaluate_on_environment(env), 'td_error': td_error_scorer, 'discounted_advantage': discounted_sum_of_advantage_scorer, 'value_scale': average_value_estimation_scorer, 'value_std': value_estimation_std_scorer, 'action_diff': continuous_action_diff_scorer })
def save_policy(self, path, epoch, as_onnx): params_path = os.path.join(self.get_log_path(), 'params.json') model_path = os.path.join(self.get_log_path(), 'model_%d.pt' % epoch) if not os.path.exists(model_path): raise ValueError('%s does not exist.' % model_path) # initialize algorithm from json file if self.project.algorithm == 'cql': if self.project.dataset.is_discrete: algo = DiscreteCQL.from_json(params_path) else: algo = CQL.from_json(params_path) else: raise ValueError('unsupported algorithm.') # load model parameters algo.load_model(model_path) # save TorchScript policy algo.save_policy(path, as_onnx)
from sklearn.model_selection import train_test_split from d3rlpy.datasets import get_pybullet from d3rlpy.algos import CQL from d3rlpy.ope import FQE from d3rlpy.metrics.scorer import evaluate_on_environment from d3rlpy.metrics.scorer import initial_state_value_estimation_scorer from d3rlpy.metrics.scorer import soft_opc_scorer dataset, env = get_pybullet('hopper-bullet-mixed-v0') train_episodes, test_episodes = train_test_split(dataset, test_size=0.2) # train algorithm cql = CQL(n_epochs=100, use_gpu=True) cql.fit(train_episodes, eval_episodes=test_episodes, scorers={ 'environment': evaluate_on_environment(env), 'init_value': initial_state_value_estimation_scorer, 'soft_opc': soft_opc_scorer(600) }) # or load the trained model # cql = CQL.from_json('<path-to-json>/params.json') # cql.load_model('<path-to-model>/model.pt') # evaluate the trained policy fqe = FQE(algo=cql, n_epochs=200, q_func_factory='qr', learning_rate=1e-4,
from d3rlpy.datasets import get_pybullet from d3rlpy.algos import CQL from d3rlpy.metrics.scorer import evaluate_on_environment from d3rlpy.metrics.scorer import td_error_scorer from d3rlpy.metrics.scorer import discounted_sum_of_advantage_scorer from d3rlpy.metrics.scorer import average_value_estimation_scorer from sklearn.model_selection import train_test_split dataset, env = get_pybullet('hopper-bullet-mixed-v0') train_episodes, test_episodes = train_test_split(dataset, test_size=0.2) cql = CQL(augmentation=['single_amplitude_scaling'], use_gpu=True) cql.fit(train_episodes, eval_episodes=test_episodes, n_epochs=100, scorers={ 'environment': evaluate_on_environment(env), 'td_error': td_error_scorer, 'discounted_advantage': discounted_sum_of_advantage_scorer, 'value_scale': average_value_estimation_scorer })
from d3rlpy.datasets import get_pybullet from d3rlpy.algos import CQL from d3rlpy.metrics.scorer import evaluate_on_environment from d3rlpy.metrics.scorer import discounted_sum_of_advantage_scorer from sklearn.model_selection import train_test_split # get data-driven RL dataset dataset, env = get_pybullet('hopper-bullet-mixed-v0') # split dataset train_episodes, test_episodes = train_test_split(dataset, test_size=0.2) # setup algorithm cql = CQL(actor_learning_rate=1e-3, critic_learning_rate=1e-3, temp_learning_rate=1e-3, alpha_learning_rate=1e-3, n_critics=10, bootstrap=True, update_actor_interval=2, q_func_type='qr', use_gpu=True) # start training cql.fit(train_episodes, eval_episodes=test_episodes, n_epochs=300, scorers={ 'environment': evaluate_on_environment(env), 'advantage': discounted_sum_of_advantage_scorer })
from d3rlpy.algos import CQL from d3rlpy.datasets import get_d4rl from d3rlpy.models.encoders import VectorEncoderFactory from d3rlpy.metrics.scorer import evaluate_on_environment from d3rlpy.metrics.scorer import average_value_estimation_scorer from sklearn.model_selection import train_test_split dataset, env = get_d4rl('hopper-medium-v0') _, test_episodes = train_test_split(dataset, test_size=0.2) encoder = VectorEncoderFactory(hidden_units=[256, 256, 256]) cql = CQL(actor_encoder_factory=encoder, critic_encoder_factory=encoder, alpha_learning_rate=0.0, use_gpu=True) cql.fit(dataset.episodes, eval_episodes=test_episodes, n_epochs=2000, scorers={ 'environment': evaluate_on_environment(env), 'value_scale': average_value_estimation_scorer })