def generate_set_vals(X_data, Y_data, _rev_data, pr = True): print("---------------------------------------- Data Set ----------------------------------------") print('Model: ' + model_name) prediction = model.predict(X_data) total = 0 right = 0 for i in range(len(X_data)): predict = prediction[i][0] difference = abs(predict - Y_data[i]) predict_stars = dm.to_stars(predict) actual_stars = dm.to_stars(Y_data[i]) text = str(i + 1) + ') ' + _rev_data[i] if difference <= allowed_difference: if pr: print(dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars + '----- actually ' + actual_stars) right += 1 else: if pr: print(dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars + '----- actually ' + actual_stars + ' *****') total += 1 print('Accuracy:', str(right / total * 100) + '% |', str(right) + '/' + str(total))
def generate_naive(forever = False): inp = '' print('Model: ' + model_name) while forever or not any(inp == w for w in stop_words): inp = input('Sample review:\n') prediction = naive_predict(inp) print(dm.truncate_text('', char_to_display) + ' ----- predicted ' + prediction)
def generate_set_naive(X_data): print("---------------------------------------- Data Set ----------------------------------------") print('Model: ' + model_name) prediction = naive_predict_data(X_data) for i in range(len(X_data)): predict = prediction[i] predict_stars = dm.to_stars(predict) text = str(i + 1) + ') ' + X_data[i] print(dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars)
def generate(forever = False): inp = '' print('Model: ' + model_name) while forever or not any(inp == w for w in stop_words): inp = input('Sample review:\n') z = dm.data_to_input(inp) prediction = model.predict(z) predict = prediction[0][0] predict_stars = dm.to_stars(predict) print(dm.truncate_text('', char_to_display) + ' ----- predicted ' + predict_stars)
def generate_set(X_data, _rev_data): print("---------------------------------------- Data Set ----------------------------------------") print('Model: ' + model_name) z = [] for data in X_data: z.append(dm.data_to_input(data)[0]) X_data = np.array(z) prediction = model.predict(X_data) for i in range(len(_rev_data)): predict = prediction[i][0] predict_stars = dm.to_stars(predict) text = str(i + 1) + ') ' + _rev_data[i] print(dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars)
allowed_difference = 0.1 total = 0 right = 0 for i in range(len(X_train)): predict = prediction[i][0] difference = abs(predict - Y_train[i]) predict_stars = dm.to_stars(predict) actual_stars = dm.to_stars(Y_train[i]) text = str(i + 1) + ') ' + _rev_train[i] if difference <= allowed_difference: print(dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars + '----- actually ' + actual_stars) right += 1 else: print(dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars + '----- actually ' + actual_stars + ' *****') total += 1 print('Loss:', loss, 'Accuracy:', str(right / total * 100) + '% |', str(right) + '/' + str(total)) print("---------------------------------------- TEST SET ----------------------------------------") loss, acc = model.evaluate(X_test, Y_test, verbose = 0) prediction = model.predict(X_test) total = 0 right = 0
total = 0 right = 0 for i in range(len(X_train)): predict = prediction[i][0] difference = abs(predict - Y_train[i]) predict_stars = dm.to_stars(predict) actual_stars = dm.to_stars(Y_train[i]) text = str(i + 1) + ') ' + _rev_train[i] if difference <= allowed_difference: print( dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars + '----- actually ' + actual_stars) right += 1 else: print( dm.truncate_text(text, char_to_display) + ' ----- predicted ' + predict_stars + '----- actually ' + actual_stars + ' *****') total += 1 print('Loss:', loss, 'Accuracy:', str(right / total * 100) + '% |', str(right) + '/' + str(total)) print( "---------------------------------------- TEST SET ----------------------------------------" )