def make_test_network_chain(n=31):
    ntw = Network(optimisation=NetworkOptimisation.id_only)
    for i in range(n):
        ntw.add_node(i + 1)
    for i in range(n - 1):
        ntw.add_link(i + 1, i + 2)
    return ntw
def make_test_network_star():
    ntw = Network(optimisation=NetworkOptimisation.id_only)
    for i in range(31):
        ntw.add_node(i + 1)
    for i in range(30):
        ntw.add_link(1, i + 2)
    return ntw
def make_test_network_traingle():
    ntw = Network(optimisation=NetworkOptimisation.id_only)
    for i in range(3):
        ntw.add_node(i + 1)
    ntw.add_link(1, 2)
    ntw.add_link(1, 3)
    ntw.add_link(2, 3)
    return ntw
def make_test_network_connected():
    ntw = Network(optimisation=NetworkOptimisation.id_only)
    for i in range(31):
        ntw.add_node(i + 1)
    for i in range(30):
        for j in range(i + 1, 31):
            ntw.add_link(i + 1, j + 1)
    return ntw
class InformationConductivity(object):
    def __init__(self):
        self.cascades_network = Network()
        self.underlying = Network()
        pass

    def make_cascades_summary(self, cascade_networks, logweight=True):
        new_nodes = {}
        new_links = {}
        self.cascades_network = Network()
        for cascade in cascade_networks:
            for node_id in cascade.network.nodes_ids:
                if new_nodes.get(node_id) is None:
                    new_nodes[node_id] = 0
                new_nodes[node_id] += 1
            for from_id, to_id in cascade.network.links.keys():
                if new_links.get((from_id, to_id)) is None:
                    new_links[(from_id, to_id)] = 0
                new_links[(from_id, to_id)] += 1
        self.cascades_network.nodes_attributes.append({'id': 'w', 'title': 'LogWeight', 'type': 'float'})
        for node_id, quantity in new_nodes.items():
            self.cascades_network.add_node(node_id)
            if logweight:
                w = math.log(quantity) + 1
            else:
                w = quantity
            self.cascades_network.add_meta_for_node(node_id, {'w': w})
        for link, quantity in new_links.items():
            if logweight:
                w = math.log(quantity) + 1
            else:
                w = quantity
            self.cascades_network.add_link(link[0], link[1], mutual=False, weighted=True, weight=w)

    def make_underlying_summary(self, underlyings):
        if len(underlyings) == 1:
            self.underlying = underlyings[0].network
        else:
            self.underlying = Network(optimisation=NetworkOptimisation.id_only)
            for underlying in underlyings:
                for node_id, neighbors in underlying.network.nodes.items():
                    self.underlying.add_node(node_id)
                    self.underlying.nodes[node_id].update(neighbors)

    def nodes_summary(self):
        summary = {'in': [], 'out': [], 'in_w': [], 'out_w': [], 'degree': [], 'w': []}
        for node_id, node_data in self.cascades_network.nodes.items():
            degrees = self.cascades_network.node_degree(node_id)
            weights = self.cascades_network.node_weighted_degree(node_id)
            summary['in'].append(degrees['in'])
            summary['out'].append(degrees['out'])
            summary['in_w'].append(weights['in'])
            summary['out_w'].append(weights['out'])
            summary['degree'].append(self.underlying.node_degree(node_id)['inout'])
            summary['w'].append(self.cascades_network.meta_for_node(node_id, 'w'))
        return summary
def make_test_network():
    ntw = Network(optimisation=NetworkOptimisation.id_only)
    for i in range(31):
        ntw.add_node(i + 1)
    ntw.add_link(1, 2)
    ntw.add_link(1, 3)
    ntw.add_link(2, 3)
    ntw.add_link(3, 4)
    ntw.add_link(4, 5)
    ntw.add_link(4, 6)
    ntw.add_link(5, 6)
    ntw.add_link(4, 7)
    ntw.add_link(7, 8)
    ntw.add_link(7, 9)
    ntw.add_link(7, 10)
    ntw.add_link(8, 10)
    ntw.add_link(9, 10)
    ntw.add_link(9, 11)
    ntw.add_link(11, 12)
    ntw.add_link(11, 13)
    ntw.add_link(12, 13)
    ntw.add_link(13, 14)
    ntw.add_link(8, 15)
    ntw.add_link(3, 16)
    ntw.add_link(16, 17)
    ntw.add_link(17, 18)
    ntw.add_link(18, 19)
    ntw.add_link(19, 20)
    ntw.add_link(15, 20)
    ntw.add_link(1, 21)
    ntw.add_link(1, 22)
    ntw.add_link(1, 23)
    ntw.add_link(1, 24)
    ntw.add_link(1, 25)
    ntw.add_link(1, 26)
    ntw.add_link(2, 21)
    ntw.add_link(2, 22)
    ntw.add_link(2, 23)
    ntw.add_link(2, 24)
    ntw.add_link(2, 25)
    ntw.add_link(2, 26)
    ntw.add_link(3, 21)
    ntw.add_link(3, 22)
    ntw.add_link(3, 23)
    ntw.add_link(3, 24)
    ntw.add_link(3, 25)
    ntw.add_link(3, 26)
    return ntw
Example #7
0
class ICNetworkManager(NetworkManager):
    def __init__(self, net=Network(), name='', base_dir=''):
        super().__init__(net, name, base_dir)
        self.post_meta = {}
        self.posters = {}
        self.hiddens = set()
        self.likers = set()
        self.timestamp = datetime.datetime.now()

    def get_data_dict(self):
        data_dict = super().get_data_dict()
        data_dict['post_meta'] = self.post_meta
        data_dict['posters'] = self.posters
        data_dict['hiddens'] = self.hiddens
        data_dict['likers'] = self.likers
        data_dict['timestamp'] = self.timestamp
        return data_dict

    def set_data_dict(self, data_dict):
        super().set_data_dict(data_dict)
        self.post_meta = data_dict['post_meta']
        self.posters = data_dict['posters']
        self.hiddens = data_dict['hiddens']
        self.likers = data_dict['likers']
        self.timestamp = data_dict['timestamp']

    def crawl_next(self):
        if len(self.crawl_plan) == 0:
            # print('Crawl plan is length of zero')
            return 0

        crawler = self.crawl_plan[0]
        result = self.crawl_post(crawler)

        if result == 'empty':
            self.crawl_plan.pop(0)
        if result != 'error':
            return 1
        else:
            return -1

    def crawl_post(self, crawler):
        if crawler['stage'] == 0:
            source_id = crawler['source_id']
            post_id = crawler['post_id']
            meta = crlr.get_root_post_for_wall_with_meta(source_id, post_id)
            if vk.is_error(meta):
                if vk.error_code(
                        meta) != 666:  #666 is the code if no root post found
                    print('Error: ' + str(meta['error']['error_code']) + ' ' +
                          meta['error']['error_msg'])
                    return 'error'
                return 'empty'
            self.post_meta = meta
            self.posters[source_id] = self.post_meta['postinfo']
            if self.posters[source_id].get('likes') is not None:
                crawler['likes_to_process'] |= self.posters[source_id]['likes']
                crawler['stage'] = 1
                return 'done'
            return 'empty'
        elif crawler['stage'] == 1:
            source_id = crawler['source_id']
            post_id = crawler['post_id']
            likes_to_process = crawler['likes_to_process']
            likes_processed = crawler['likes_processed']
            if len(likes_to_process) == 0:
                return 'empty'
            user_id = likes_to_process.pop()
            content_md5 = self.post_meta['md5']
            search_string = self.post_meta['search_string']
            source_date = self.post_meta['postinfo']['date']
            new_post_info = crlr.find_post_on_wall(
                user_id,
                content_md5,
                search_string,
                source_id,
                source_date,
                use_cache=True,
                cache_date_utc=(self.timestamp.timestamp() - 25200),
                original_id=post_id)
            if vk.is_error(new_post_info):
                likes_to_process.add(user_id)
                print('Error: ' + str(new_post_info['error']['error_code']) +
                      ' ' + new_post_info['error']['error_msg'])
                return 'error'
            if new_post_info['type'] == 'poster':
                print(new_post_info)
                if vk.is_error(new_post_info['likes']):
                    if vk.error_code(new_post_info['likes']) == 15:
                        new_post_info['likes'] = set()
                self.posters[user_id] = new_post_info
                likes_processed.add(user_id)
                if len(new_post_info['likes']):
                    likes_to_process |= new_post_info['likes'] - likes_processed
                if len(new_post_info['copy_history']):
                    for copy_case in new_post_info['copy_history']:
                        if copy_case['owner_id'] not in likes_processed:
                            likes_to_process.add(copy_case['owner_id'])
                        if copy_case['from_id'] not in likes_processed:
                            likes_to_process.add(copy_case['from_id'])
            elif new_post_info['type'] == 'hidden':
                self.hiddens.add(user_id)
            elif new_post_info['type'] == 'liker':
                self.likers.add(user_id)

    def schedule_crawl_post_from_source(self, source_id, post_id):
        self.post_meta = {}
        self.posters = {}
        self.hiddens = set()
        self.likers = set()

        crawler = {
            'type': 'post',
            'stage': 0,
            'source_id': source_id,
            'post_id': post_id,
            'likes_to_process': set(),
            'likes_processed': set()
        }

        self.crawl_plan.append(crawler)

    def remake_network(self,
                       possible_links: dict,
                       uselikes=True,
                       usehiddens=True,
                       dynamic=True,
                       logdyn=False,
                       start_from_zero=False):
        # print('This method updates network from post_meta, hiddens, likers etc.')
        self.network = Network()
        if dynamic:
            self.network.nodes_attributes.append({
                'id': 'start',
                'title': 'start',
                'type': 'float'
            })
            self.network.nodes_attributes.append({
                'id': 'n',
                'title': 'Underlying_degree',
                'type': 'integer'
            })
            self.network.nodes_attributes.append({
                'id': 'g',
                'title': 'Is_group',
                'type': 'boolean'
            })
            self.network.links_attributes.append({
                'id': 'start',
                'title': 'start',
                'type': 'float'
            })
            self.network.links_attributes.append({
                'id': 'delay',
                'title': 'delay',
                'type': 'float'
            })
        if usehiddens:
            for node_id in self.hiddens:
                self.network.add_node(node_id)
        if uselikes:
            for node_id in self.likers:
                self.network.add_node(node_id)
        nodes = self.posters.keys()
        min_date = float("inf")
        if start_from_zero:
            for node_id in nodes:
                date = self.posters[node_id]['date']
                if date < min_date:
                    min_date = date
        for node_id in nodes:
            self.network.add_node(node_id)
            if node_id > 0:
                self.network.add_meta_for_node(node_id, {'g': "False"})
            else:
                self.network.add_meta_for_node(node_id, {'g': "True"})
            date = self.posters[node_id]['date']
            neighs_set = possible_links.get(node_id)
            if neighs_set:
                self.network.add_meta_for_node(node_id, {'n': len(neighs_set)})
            else:
                self.network.add_meta_for_node(node_id, {'n': 0})
            if start_from_zero:
                date -= min_date
            if dynamic:
                if logdyn:
                    self.network.add_meta_for_node(
                        node_id, {'start': math.log(date + 1)})
                else:
                    self.network.add_meta_for_node(node_id, {'start': date})
            for node2_id in nodes:
                if node2_id != node_id:
                    date2 = self.posters[node2_id]['date']
                    if start_from_zero:
                        date2 -= min_date
                    if date < date2:
                        if neighs_set and node2_id in neighs_set:
                            self.network.add_link(node_id,
                                                  node2_id,
                                                  mutual=False)
                            self.network.add_meta_for_link(
                                node_id, node2_id, {'delay': date2 - date})
                            if dynamic:
                                if logdyn:
                                    self.network.add_meta_for_link(
                                        node_id, node2_id,
                                        {'start': math.log(date2 + 1)})
                                else:
                                    self.network.add_meta_for_link(
                                        node_id, node2_id, {'start': date2})
                        # print('Link: ' + str(node_id) + ' -> ' + str(node2_id))
            # print(str(node_id) + ' : ' + str(self.posters[node_id]))

    def get_minimum_delay(self):
        min_delay = float('inf')
        for link_key in self.network.links.keys():
            delay = self.network.meta_for_link(link_key[0], link_key[1],
                                               'delay')
            if delay < min_delay:
                min_delay = delay
        return min_delay

    def get_outcome(self, normalization_factor=1.0):
        min_date = float("inf")
        outcome = {}
        for node_id, node_data in self.posters.items():
            date = node_data['date']
            if date < min_date:
                min_date = date
        for node_id, node_data in self.posters.items():
            outcome[node_id] = (node_data['date'] -
                                min_date) / normalization_factor
        return outcome

    def get_outcome_connected_only(self,
                                   possible_links: dict,
                                   normalization_factor=1.0):
        outcome = self.get_outcome(normalization_factor)
        self.remake_network(possible_links)
        connected_nodes = set()
        border = set()
        for node_id, time in outcome.items():
            if time <= .0:
                border.add(node_id)
        while len(border):
            new_border = set()
            for node_id in border:
                node = self.network.nodes.get(node_id)
                print(node)
                if node:
                    if len(node['out']):
                        new_border |= set(node['out'])
            connected_nodes |= border
            new_border -= connected_nodes
            border = new_border

        new_outcome = {}
        for node_id, time in outcome.items():
            if node_id in connected_nodes:
                new_outcome[node_id] = time

        return new_outcome