from dae import ex @ex.named_config def best_bars(): dataset = { 'name': 'bars', 'salt_n_pepper': 0.0 } training = { 'learning_rate': 0.768014586935404 } seed = 459182787 network_spec = "Fr100" net_filename = 'Networks/best_bars_dae.h5' ex.run(named_configs=['best_bars']) @ex.named_config def best_corners(): dataset = { 'name': 'corners', 'salt_n_pepper': 0.0 } training = { 'learning_rate': 0.0019199822609484764 } seed = 158253144 network_spec = "Fr100" net_filename = 'Networks/best_corners_dae.h5'
nr_runs_per_dataset = 100 datasets = { 'bars': 12, 'corners': 5, 'shapes': 3, 'multi_mnist': 3, 'mnist_shape': 2, 'simple_superpos':2 } db_name = 'binding_via_rc' # Random search ex.observers = [MongoObserver.create(db_name=db_name, prefix='random_search')] for ds, k in datasets.items(): for i in range(nr_runs_per_dataset): ex.run(config_updates={'dataset.name': ds, 'verbose': False, 'em.k': k}, named_configs=['random_search']) # Multi-Train Runs ex.observers = [MongoObserver.create(db_name=db_name, prefix='train_multi')] for ds, k in datasets.items(): if ds == "simple_superpos": continue for i in range(nr_runs_per_dataset): ex.run(config_updates={ 'dataset.name': ds, 'dataset.train_set': 'train_multi', 'em.k': k, 'em.e_step': 'max', 'verbose': False}, named_configs=['random_search']) # MSE-Likelihood Runs
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals from dae import ex @ex.named_config def best_bars(): dataset = {'name': 'bars', 'salt_n_pepper': 0.0} training = {'learning_rate': 0.768014586935404} seed = 459182787 network_spec = "Fr100" net_filename = 'Networks/best_bars_dae.h5' ex.run(named_configs=['best_bars']) @ex.named_config def best_corners(): dataset = {'name': 'corners', 'salt_n_pepper': 0.0} training = {'learning_rate': 0.0019199822609484764} seed = 158253144 network_spec = "Fr100" net_filename = 'Networks/best_corners_dae.h5' ex.run(named_configs=['best_corners']) @ex.named_config